

Lecture Notes in Computer Science 5245
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jian Cao Minglu Li Min-You Wu
Jinjun Chen (Eds.)

Network and
Parallel Computing
IFIP International Conference, NPC 2008
Shanghai, China, October 18-20, 2008
Proceedings

13

Volume Editors

Jian Cao
Shanghai Jiatong University
Department of Computer Science and Engineering
80 Dongcuan Road, Shanghai 200240, China
E-mail: cao-jian@sjtu.edu.cn

Minglu Li
Shanghai Jiatong University
Department of Computer Science and Engineering
80 Dongcuan Road, Shanghai 200240, China
E-mail: li-mli@cs.sjtu.edu.cn

Min-You Wu
Shanghai Jiatong University
Department of Computer Science and Engineering
80 Dongcuan Road, Shanghai 200240, China
E-mail: wu-my@cs.sjtu.edu.cn

Jinjun Chen
Swinburne University of Technology
Centre for Complex Software Systems and Services
Faculty of Information & Communication Technologies
1, Alfred Street, Hawthorn, Melbourne, Victoria 3122, Australia
E-mail: jchen@swin.edu.au

Library of Congress Control Number: 2008935897

CR Subject Classification (1998): C.2, D.4.6, E.3, D.1.3, F.1.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-88139-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88139-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12532995 06/3180 5 4 3 2 1 0

Preface

Welcome to the proceedings of the 2008 IFIP International Conference on Network
and Parallel Computing (NPC 2008) held in Shanghai, China.

NPC has been a premier conference that has brought together researchers and prac-
titioners from academia, industry and governments around the world to advance the
theories and technologies of network and parallel computing. The goal of NPC is to
establish an international forum for researchers and practitioners to present their ex-
cellent ideas and experiences in all system fields of network and parallel computing.
The main focus of NPC 2008 was on the most critical areas of network and parallel
computing, network technologies, network applications, network and parallel architec-
tures, and parallel and distributed software.

In total, the conference received more than 140 papers from researchers and practi-
tioners. Each paper was reviewed by at least two internationally renowned referees
and selected based on its originality, significance, correctness, relevance, and clarity
of presentation. Among the high-quality submissions, only 32 regular papers were
accepted by the conferences. All of the selected conference papers are included in the
conference proceedings. After the conference, some high-quality papers will be rec-
ommended to be published in the special issue of international journals.

We were delighted to host three well-known international scholars offering the key-
note speeches, Sajal K. Das from University Texas at Arlington USA, Matt Mutka
from Michigan State University and David Hung-Chang Du from University of Min-
nesota University of Minnesota.

We would like to take this opportunity to thank all the authors for their submissions
to NPC 2008. We also thank the Program Committee members and additional review-
ers for providing in-depth reviews. Our thanks also go to local conference organizers
for their local arrangements.

Last but not least, we appreciate IFIP Working Group 10.3 on Concurrent Systems.
We are also grateful to the Steering Committee of IFIP NPC.

October 2008

Jian Cao
Minglu Li

Ming-You Wu
Jingjun Chen

Organization

General Co-chairs

Minglu Li Shanghai Jiaotong University, China
Taieb Znati University of Pittsburgh, USA
Josep Torrellas University of Illinois at Urbana-Champaign, USA

Program Co-chairs

Ming-You Wu Shanghai Jiaotong University, China
Y. Thomas Hou Virginia Tech, USA

Program Vice Co-chairs

Jian Cao Shanghai Jiaotong University, China
Jingjun Chen Swinburne University of Technology, Australia

Steering Committee

Kemal Ebcioglu (Chair) Global Supercomputing Corporation, USA
Jack Dongarra University of Tennessee, USA
Guang Gao University of Delaware, USA
Jean-Luc Gaudiot University of California, Irvine, USA
Chris Jesshope University of Amsterdam, The Netherlands
Hai Jin Huazhong University of Science and Technology,

China
Guojie Li Institute of Computing Technology, CAS, China
Yoichi Muraoka Waseda University, Japan
Daniel Reed Microsoft, USA
Zhiwei Xu Institute of Computing Technology, CAS, China

Publicity Chair

Yadong Gui Shanghai Supercomputer Center (SSC), China

Workshop Co-chairs

Chuliang Weng Shanghai Jiaotong University, China
Haifeng Shen Nanyang Technological University, Singapore

 Organization VIII

Publication Co-chairs

Guangtao Xue Shanghai Jiaotong University, China
Xing Wang Fudan University, China

Program Committee

Andy Pimentel University of Amsterdam, The Netherlands
Depei Qian Xi'an Jiaotong University, China
Franciszek Seredynski Polish Academy of Sciences, Poland
Qingkui Chen University of Shanghai for Science and

Technology, China
Xiaowei Shen IBM T. J. Watson Research Center, USA
Sven-bodo Scholz Hertfordshire University, UK
Yutaka Takahashi Kyoto University, Japan
Makoto Takizawa Tokyo Denki University, Japan
Xinmin Tian Intel Corporation, USA
Cho-Li Wang The University of Hong Kong, Hong Kong
Xicheng Wang Dalian University of Technology, Chin
Xingwei Wang Northeastern University, China
Paul Werstein The University of Otago, New Zealand
Weng-Fai Wong National University of Singapore, Singapore
Nong Xiao National University of Defense Technology,

China
Qin Xin The University of Bergen, Norway
Cheng-Zhong Xu Wayne State University, USA
Chao-Tung Yang Tunghai University, Taiwan
Laurence T. Yang St. Francis Xavier University, Canada
Xun Yue Shandong Agricultural University, China
Weimin Zheng Tsinghua University, China
Si Qing Zheng University of Texas at Dallas, USA
Bing Bing Zhou University of Sydney, Australia
Hai Zhuge Institute of Computing Technology, CAS, China
Albert Y. Zomaya The University of Sydney, Australia
Ajith Abraham Chun-Ang University, Korea
Ishfaq Ahmad University of Texas at Arlington, USA
Makoto Amamiya Kyushu University, Japan
Luc Bouge IRISA/ENS Cachan, France
Pascal Bouvry University of Luxembourg, Luxembourg
Jiannong Cao Hong Kong Polytechnic University, Hong Kong
Yeh-Ching Chung National Tsing Hua University, Taiwan
Chen Ding University of Rochester, USA
Christine Eisenbeis INRIA, France
Bjoern Franke University of Edinburgh, UK
Cecile Germain University of Paris Sud, France
Anura Jayasumana Colorado State Univeristy, USA

 Organization IX

Weijia Jia City University of Hong Kong, Hong Kong
Yong-kee Jun Gyeongsang National University, Korea
Gabriele Kotsis Johannes Kepler University Linz, Austria
Ricky Kwok The University of Hong Kong, Hong Kong
Francis Lau The University of Hong Kong, Hong Kong
Kuan-Ching Li Providence University, Taiwan
Xiuqi Li Florida Atlantic University, USA
Geyong Min University of Bradford, UK
Koji Nakano Hiroshima University, Japan
Lionel Ni Hong Kong University of Science and

Technology, Hong Kong
Jun Ni The University of Iowa, USA
Yang Xiang Central Queensland University, Australia
Josep Torrellas University of Illinois at Urbana-Champaign, USA
Jong Hyuk Park Kyungnam University, Korea

Table of Contents

Network Technologies

An AIAD-Based Adaptive Routing Protocol in Ad-Hoc Wireless
Networks . 1

Youn-Sik Hong and Ki-Young Lee

Adaptive Neighbor Selection for Service Discovery in Mobile Ad Hoc
Networks . 13

Eunyoung Kang, Yongsoon Im, and Ungmo Kim

A Formal Approach to Robustness Testing of Network Protocol 24
Chuanming Jing, Zhiliang Wang, Xia Yin, and Jianping Wu

Deadline Probing: Towards Timely Cognitive Wireless Network 38
Panlong Yang, Guihai Chen, and Qihui Wu

SRDFA: A Kind of Session Reconstruction DFA . 50
Jinjing Huang, Lei Zhao, and Jiwen Yang

Measuring the Normality of Web Proxies’ Behavior Based on Locality
Principles . 61

Yi Xie and Shun-zheng Yu

Network Applications

Feedback Control-Based Database Connection Management for
Proportional Delay Differentiation-Enabled Web Application Servers . . . 74

Wenping Pan, Dejun Mu, Hangxing Wu, Xinjia Zhang, and Lei Yao

Research on the Detection of Distributed Denial of Service Attacks
Based on the Characteristics of IP Flow . 86

Dongqi Wang, Guiran Chang, Xiaoshuo Feng, and Rui Guo

Password-Authenticated Key Exchange between Clients in a
Cross-Realm Setting . 94

Shuhua Wu and Yuefei Zhu

Forward Secure Password-Based Authenticated Key Distribution in the
Three-Party Setting . 105

Shuhua Wu and Yuefei Zhu

Key Management Using Certificateless Public Key Cryptography in Ad
Hoc Networks . 116

Fagen Li, Masaaki Shirase, and Tsuyoshi Takagi

XII Table of Contents

A Data Storage Mechanism for P2P VoD Based on Multi-channel
Overlay . 127

Xiaofei Liao, Hao Wang, Song Wu, and Hai Jin

HTL: A Locality Bounded Flat Hash Location Service 138
Ruonan Rao, Shuying Liang, and Jinyuan You

Accelerating the Propagation of Active Worms by Employing Multiple
Target Discovery Techniques . 150

Xiang Fan and Yang Xiang

Online Accumulation: Reconstruction of Worm Propagation Path 162
Yang Xiang, Qiang Li, and Dong Guo

HRS: A Hybrid Replication Strategy for Exhaustive P2P Search 173
Hanhua Chen, Hai Jin, Xucheng Luo, and Zhiguang Qin

ResourceDog: A Trusted Resource Discovery and Automatic Invocation
P2P Framework . 185

Bowei Yang, Guanghua Song, and Yao Zheng

Network and Parallel Architectures

A Novel Approach to Manage Asymmetric Traffic Flows for Secure
Network Proxies . 196

Qing Li

Automatic Transformation for Overlapping Communication and
Computation . 210

Changjun Hu, Yewei Shao, Jue Wang, and Jianjiang Li

Cooperative Communication System for Parallel Computing Agents in
Multi-cluster Grid . 221

Qing-Kui Chen and Wei Wang

CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement
Problem . 232

Wei Fu, Yingjie Zhao, Nong Xiao, and Xicheng Lu

Online Balancing Two Independent Criteria . 244
Savio S.H. Tse

Procrastination Scheduling for Fixed-Priority Tasks with Preemption
Thresholds . 255

XiaoChuan He and Yan Jia

Parallel and Distributed Software

Survey on Parallel Programming Model . 266
Henry Kasim, Verdi March, Rita Zhang, and Simon See

Table of Contents XIII

An Integrated Framework for Wireless Sensor Web Service and Its
Performance Analysis Based on Queue Theory . 276

Luqun Li

Grid Computing: A Case Study in Hybrid GMRES Method 286
Ye Zhang, Guy Bergere, and Serge Petiton

Towards Resource Reliability Support for Grid Workflows 297
Jiong Yu, Guozhong Tian, Yuanda Cao, and Xianhe Sun

A SyncML Middleware-Based Solution for Pervasive Relational Data
Synchronization . 308

Haitao Yang, Peng Yang, Pingjing Lu, and Zhenghua Wang

An Efficient Authentication and Key Agreement Protocol in RFID
System . 320

Eun-Jun Yoon and Kee-Young Yoo

Grid Service Discovery Based on Cross-VO Service Domain Model 327
Jing-Ya Zhou, Jun-Zhou Luo, and Ai-Bo Song

Ontology-Based Semantic Method for Service Modeling in Grid 339
Bin Cheng, Xingang Wang, and Weiqin Tong

A Scalable and Adaptive Distributed Service Discovery Mechanism in
SOC Environments . 349

Xiao Zheng, Junzhou Luo, and Ai-Bo Song

Author Index . 361

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 1–12, 2008.
© IFIP International Federation for Information Processing 2008

An AIAD-Based Adaptive Routing Protocol
in Ad-Hoc Wireless Networks

Youn-Sik Hong1 and Ki-Young Lee2

1 Department of Computer Science and Eng.
2 Department of Information and Telecommunication Eng.,

University of Incheon
177 Dowha-dong Nam-gu 402-749 Incheon, Korea

{yshong,kylee}@incheon.ac.kr

Abstract. AODV routing protocol is intended for use by mobile nodes in ad-
hoc wireless networks. Even though it performs well in static and low-mobility
environments, the performance degrades rapidly with increasing mobility. Our
primary concern is to enhance the performance of AODV by reducing the vol-
ume of the control packets like RREQ and RREP during the route discovery
process effectively due to the node mobility. The propagation delays of the all
possible links vary according to changes in its topology. Carefully adjusting the
values of these network parameters can reduce the occurrences of the control
packets. Thus, we propose a novel method of smoothly adjusting them based on
AIAD (additive increase additive decrease) under a consideration of current
network status. We have tested our proposed method with both the conventional
AODV and the method using timestamp based on the three performance met-
rics; i.e., node mobility, node velocity, and node density, to compare their per-
formances.

Keywords: Ad-hoc Network, AODV, Expanding Ring Search, Node Mobility,
Node Traversal Time.

1 Introduction

Ad-hoc wireless network architecture is a self-organizing and distributed controlled
network formed by a set of stations (called nodes) that can freely and dynamically
self-configure and organize themselves to set up a temporary wireless network [1]. In
the ad-hoc network configuration, a node acts as a mobile terminal as well as a router
to forward messages to neighboring nodes if possible. The network topology in an ad
hoc network is highly dynamic due to the movement of nodes; hence an on-going
session suffers frequent path breaks. A disruption may be occurred either due to the
movement of the intermediate nodes in the path or due to the movement of end nodes.
Routing protocols for ad-hoc networks must be able to perform efficient and effective
mobility management.

Existing ad-hoc routing protocols may generally be categorized as table-driven and
source-initiated demand driven [2]. In table-driven routing protocols, every node
maintains the network topology information in the form of routing tables by

2 Y.-S. Hong and K.-Y. Lee

periodically exchanging routing information. These protocols suffer from excessive
control overhead that is proportional to the number of nodes in the network and there-
fore is not scalable in ad-hoc wireless networks, which have limited bandwidth and
whose topologies are highly dynamic.

Unlike the table-driven routing protocols, on-demand routing protocols execute the
path-finding process and exchange routing information only when a path is required
by a source node to communicate with a destination. One of the on-demand routing
protocols is AODV (Ad-hoc On-demand Distance Vector) [5]. In AODV, a source
node floods the Route Request (RREQ) packet in the network when a route is not
available for the desired destination. When an intermediate node receives a RREQ,
it either forwards it or prepares a Route Reply (RREP) if it has a valid route to the
destination. All intermediate nodes having valid routes to the destination, or the desti-
nation node itself, are allowed to send RREP packets to the source. AODV reduces
the need for the system wide broadcasts by localizing the propagation of changes in
the network. Even though it performs well in static and low-mobility environments,
the performance degrades rapidly with increasing mobility.

As shown in Fig 1, data packet transmission is slightly affected by the node mobil-
ity. However, as the node mobility increases the control packets like RREQs and
RREPs increase rapidly. Then it causes route discovery latency to increase. Besides,
the amount of energy consumption increases corresponding to the increased number
of control packets. To the end, the overall performance should be degraded with high
node mobility. Our primary concern is to enhance the performance of AODV by re-
ducing the volume of these control packets effectively due to the node mobility.

Fig. 1. The number of control packets (left) and the number of data packets (right) with node
mobility

The rest of this paper is organized as follows. In section 2, we describe the expand-
ing ring search algorithm and related works. In section 3, we present a proposed ap-
proach based on AIAD method. In section 4, a series of experimental results will be
given and finally we conclude our paper in section 5.

2 Expanding Ring Search and Related Works

2.1 Expanding Ring Search

Consider the example depicted in Fig 2. In this figure, the source node 1 initiates a
path-finding process by originating a RREQ to be flooded in the network for the

 An AIAD-Based Adaptive Routing Protocol in Ad-Hoc Wireless Networks 3

Fig. 2. AODV route discovery; propagation of the RREQ packets (left) and a path of the RREP
packet to the source (right)

destination node 8. When the intermediate nodes 2, 3, and 4 receive the RREQ packet,
they check their routes to the destination. In case a route to the destination is not
available, they further forward it to their neighbors. If the RREQ reaches the node 8
through path 1-4-6-8 or any other alternate route, it also sends a RREP to the source.

To prevent unnecessary network-wide dissemination of RREQs, the source node
should use an expanding ring search (ERS) technique [6]. Centered on the source
node, ERS successively searches larger areas until a node with the information being
searched is located. In the ERS, the source node initially uses a TTL (time to live) =
TTL_START in the RREQ packet header and sets the timeout for receiving a RREP
to RING_TRAVERSAL_TIME milliseconds [5]. If the RREQ times out without a
corresponding RREP, the source node broadcasts the RREQ again with the TTL in-
cremented by TTL_INCREMENT. This continues until the TTL set in the RREQ
reaches TTL_THRESHOLD, beyond which a TTL = NET_DIAMETER is used for
each attempt. Beyond this, the RREQ is not forwarded any further. Each time, the
timeout for receiving a RREP is RING_TRAVERSAL_TIME. Table 1 gives default
values for some important parameters associated with ERS techniques used in the
AODV routing protocol.

Table 1. Default values for AODV parameters

Parameter name value
NET_DIAMETER 35

NODE_TRAVERSAL_TIME 40 ms
NET_TRAVERSAL_TIME 2 NODE_TRAVERSAL_TIME NET_DIAMETER
RING_TRAVERSAL_TIME 2 NODE_TRAVERSAL_TIME TTL_VALUE

TTL_START 1
TTL_INCREMENT 2
TTL_THRESHOLD 7

NODE_TRAVERSAL_TIME (NTT) is a conservative estimate of the average one
hop traversal time for packets and should include queuing delays, interrupt processing
times and transfer times [5]. Typically NTT is set to a fixed value of 40ms. In that
case, it does not reflect a full dynamic topology with respect to node mobility in ad-
hoc wireless networks. For example, node i moves to the right in some distance from
its neighbors as shown in Fig 3, while it still resides in a transmission range of them.

4 Y.-S. Hong and K.-Y. Lee

It causes a longer response time for the query from its neighbors. In TTL-based ERS,
if the node cannot reply within a specified time-out period, the source node re-
initiates a RREQ packet as shown in Fig 3(a). However, by setting the appropriate
TTL value in the query as shown in Fig 3(b), the source node can control the search
radius. Thus, by setting the appropriate NTT value the unnecessary RREQ packets
should be minimized. Minimizing the cost of the initiating and the forwarding RREQ
packets is crucial for resource-constraint multi-hop wireless network, which motivates
this work.

Fig. 3. An illustration of our proposed approach: (a) TTL-based ERS, (b) NTT-based ERS

2.2 Related Works

A number of heuristics for enhancements of the performance of AODV routing proto-
col has been proposed. Hassan and Jha [7] explored to find an optimum TTL thresh-
old L that would minimize the expected bandwidth cost of ERS. They give the follow-
ing experimental results; search threshold L of 3 is optimum for three categories of
networks, that is, large networks with small radius, medium networks with large ra-
dius and medium networks with small radius. In the AODV, TTL_THRESHOLD is
typically set to 7, which gives the search threshold of 3.

Some of the works tries to identify the inefficient elements of ERS. Lee et al[9] pro-
posed a method of timestamp to compute NTT; every node adds the current time to the
message (i.e., RREQ and RREP) before sending it out, and then the neighbor that re-
ceives it computes a measured traversal time (called M) using the timestamp. A
smoothed NTT is updated by using the similar equation of the round-trip-time estimator:

NTT = αⅹNTT + (1 - α) M (1)

where, α is a smoothing factor with a range of 0 and 1. Kim et al [10] presented a
technique of estimating NTT that divides a time difference between the source node
and the destination node by the number of hops. In addition, Park et al [11] proposed
a blocking ERS (B-ERS for short). One of the differences from the TTL-ERS is that
the B-ERS does not resume its route search procedure from the source node each time
a rebroadcast is required. Tripathi et al [8] proposed four heuristics; one for them is
the utilization of route caches at intermediate nodes for route discovery.

 An AIAD-Based Adaptive Routing Protocol in Ad-Hoc Wireless Networks 5

All of the works mentioned above have an emphasis on the adaptive control of
AODV routing protocol with respect to node mobility. Since the timestamp based
approaches [9] changes NTT too rapidly, the stability of the network becomes rela-
tively low. Besides, with low mobility their performance will be degraded due to
increases in the number of RREQ packets initiated by the source node. Even if B-ERS
reduces in route discovery latency, it may suffer from dynamic changes in the network
topology with high mobility. With the proposed heuristics proposed by Tripathi et al,
the complexity of maintenance of multiple paths demands a larger memory and
greater processing power for every node.

3 A Control Packet Minimized AODV Protocol

Our proposed method relies on packet based propagation of timestamp information to
calculate more realistic NTT by considering the network status. While initiating a
RREP, the destination node appends the timestamp information in the RREP packet.
When the source node receives the RREP packet, it checks the timestamp ST available
at the source node and the timestamp DT available at the destination node. Let MT
denotes estimated time taken for a packet to be delivered from one node to one-hop
neighboring node. Let the number of hops on the route path established between the
source node and the destination node be denoted by H. Then the MT is calculated as:

MT = (ST – DT) / H (2)

A computed estimate MT of one-hop traversal time just gives a reference relative to
a previous NTT. A new NTT should be adjusted depending on MT. For example, the
path 8-6-4-1 in Fig.2 consists of three links. Assume that each of them has a propaga-
tion delay of 40ms, 30ms, and 20ms, respectively. In that case, MT is computed as
30ms. However, since the longest propagation delay should be considered, a NTT is
not changed and still remains 40ms. If the propagation delays of the all links increase
equally in 6ms due to node mobility, MT is 36ms and then the amount of the differ-
ence between NTT and MT becomes smaller. Thus, a new NTT should be increased
by a certain amount ∆.

Table 2. The recalculated NTT with respect to the propagation delays of each link (unit: ms)

Propagation delay
Link1 Link2 Link3

MT previous
NTT

NTT –
MT

New NTT

40 30 20 30 40 10 40
46 36 26 36 40 4 40+∆
34 24 14 24 40 16 40-∆

On the contrary, if the delays of the all links decrease equally in 6ms, MT is 24ms
and then the amount of difference between them becomes greater. So a new NTT should
be decreased by ∆. The above explanations are summarized as shown in Table 2.

Then the following algorithm, called CP_AODV (Control Packet minimized
AODV), is used to resolve the number of control packets including RREQ and RREP
packets. To minimize the flooding of control packets, a NTT should be adjusted
smoothly by AIAD (additive increase additive decrease) technique.

6 Y.-S. Hong and K.-Y. Lee

IF (min_threshold > NTT – MT)
{

NTT = NTT + increment;
}
ELSE IF (max_threshold < NTT – MT)
{

NTT = NTT – increment;
IF (NTT < lower_bound)
{

 NTT = lower_bound;
}

}

The parameters min_threshold, max_threshold, and increment are adjustable with
respect to the network status. Notice that max_threshold > min_threshold. When the
amount of the difference between NTT and MT is less than min_threshold, the aver-
age propagation delay of the links seems to be increased. So a new NTT should be
increased by a specific amount increment. On the contrary, when the amount of the
difference between them is greater than max_threshold, the average delay seems to be
shorter. Then a new NTT should be decreased by increment. The parameter increment
is controlled adaptively depending on the movement of nodes. Our experimental re-
sults show that with less than 40ms of NTT the number of retransmission of the
RREQ packets increases so rapidly and thus the overall performance is degraded.
Thus, the lower bound on NTT is set to 40ms. While the amount of difference be-
tween them is in the range of min_threshold and max_threshold, the node mobility
seems to be relatively low. Then the value of a current NTT remains as before.

4 Performance Evaluations

For the purpose of the simulation, AODV protocol implemented in QualNet 4.0 simu-
lator [12] has been modified to incorporate the changes which have been proposed in
this paper. Data payload is of 512 bytes. All the data packets are CBR (continuous bit
rate) packets. Each node moves with randomly chosen maximum speed up to 10m/s.
The simulation parameters are summarized as shown in Table 3. Notice that the con-
trol parameters used in the CP_AODV are set through our simulations as the follow-
ing: min_threshold = 5, max_threshold = 10, increment = 5.

Table 3. Simulation set-up

attributes value
space 1,500m x 1,500m

bandwidth 2MB
Number of nodes 49

Placement strategy GRID
Transmission range 250m

Node velocity 0 ~ 10m/s
run time 600 seconds

 An AIAD-Based Adaptive Routing Protocol in Ad-Hoc Wireless Networks 7

The performance evaluation is based on the comparison of the three different met-
rics; node mobility, node velocity and node density. In order to get a realistic insight
into the effects of the proposed method (CP_AODV), these metrics also have been
evaluated for both the legacy AODV [6] and the modified AODV with the timestamp
method [9] (T-AODV for short).

4.1 The Experiments for the Node Mobility

After reaching the destination the node begins to move again after pause time. In our
experiments we varied it between 0 to 600 seconds. The network between the pause
times 0 to 150 have a high mobility, whereas the network beyond 450 have a low
mobility. The network between the pause times 150 to 450 have a moderate mobility.
The pause time implies the level of the mobility in the network.

We classify RREQ messages into two types; a RREQ initiated by the source node
and a RREQ forwarded by an intermediate node. The source node re-initiates the
RREQ if there is no route reply within a time-out period. Thus, a possible measure-
ment to evaluate the cost of network-wide flooding is the number of the RREQ
packets initiated by the source node. RREQ packets are flooded in the network by
intermediate nodes forwarding the requests to their neighbors. So, another measure-
ment is the number of RREQ packets forwarded by them.

For the number of RREQ packets initiated by the source node, CP_AODV is re-
markably less than AODV as shown in Fig 4. In addition, CP_AODV is better than

Fig. 4. The number of RREQ packets initiated by a source node

Fig. 5. The number of RREQ forwarded by intermediate nodes

8 Y.-S. Hong and K.-Y. Lee

T-AODV except in low mobility. For the number of RREQ packets forwarded by
intermediate nodes, CP_AODV has significantly lower average packets than the two
protocols (Fig 5). Typically, with CP_AODV the number of RREQ packets forwarded
is reduced by 28% and 21% compared to AODV and T-AODV, respectively.

The decreased number of RREQ packets result in the decreased number of both
RREP and RERR. For the number of RREP packets initiated by the destination node,
CP_AODV has significantly low average packets in all levels of node mobility than
both protocols as shown in Fig 6. In addition, with CP_AODV the number of RERR
packets is reduced by more than 30% in average than the two protocols. Notice that
both curves for RREP (Fig 6) and for RERR are similar to it for RREQ in Fig 4.

Fig. 6. The number of RREP packets initiated by a destination node

The proposed approach can save the amount of energy consumption by reducing
the number of control packets including RREQs, RREPs and RERRs without increase
in route discovery latency. The amount of energy consumption by CP_AODV,
AODV and T-AODV are plotted against the pause time (i.e., node mobility) in Fig 7.
Notice that the amount of energy consumption in Fig 7 includes both one for the route
discovery process and one for data packet transmissions. Thus the shapes of the
curves in Fig 7 are quite different from it in Fig 4. In all levels of node mobility,
CP_AODV is remarkably less than AODV.

Fig. 7. Energy consumption versus node mobility

Notice that the amount of energy consumption is greater than T-AODV by 6% in
average. The reason may be attributed to the fact that with T-AODV the number of
data packets received by the destination node is relatively small. To be more precise,

 An AIAD-Based Adaptive Routing Protocol in Ad-Hoc Wireless Networks 9

few observations can be made from our simulation results (Fig 8 and Fig 9). We see
that there is no clear distinction for the throughput versus the pause time in Fig 8 for
both CP_AODV and T-AODV. For the number of data packets received by the desti-
nation node, CP_AODV, however, is significantly higher than T-AODV by 10% as
shown in Fig 8. We can say that T-AODV transmits less data packets compared to
CP_AODV and thus its energy consumption becomes low.

CP_AODV achieves 5% and 3% better results for the throughput and the number
of data packets received, respectively, compared to AODV irrespective of node mo-
bility. From these observations, we can say that substantial reduction in the flooding
of the control packets may result in a less route discovery latency. In turn, it causes
low data packet traffic to increase the overall throughput.

Fig. 8. The throughput versus the pause time

Fig. 9. The number of data packets received

4.2 The Experiments for Node Velocity

In this experiment each node moves with a nearly constant speed. When each node is
set to the speed of 5m/s, it moves with the speed of 4~5 m/s. At the experiments in the
previous section, it moves with the random speed of 0~10 m/s. Thus, this section
focuses on the performance evaluation under the node speed ranges. Through this
experiment, the pause time is set to 100 seconds and thus the network has a high mo-
bility. The other parameters are used in Table 3. As you see in Fig 10, the average
number of RREQ packets of CP_AODV turns out to be better. More specifically, it of

10 Y.-S. Hong and K.-Y. Lee

CP_ADOV has been measured 58.7, whereas that of AODV and that of T-AODV is
67.9 and 66.1, respectively. Besides, the standard deviation for the number of RREQs
of CP_ADOV is the lowest among the three protocols. Thus, we can say that our
proposed approach is more stable under the node speed ranges.

Fig. 10. The number of RREQ initiated versus node velocity

CP_AODV achieves substantial energy savings by 11~1.7% in average compared
to both AODV and T-AODV. In addition, for the number of data packets delivered to
the destination it is better than the two protocols by 14~2.4% in average (Fig 11). It
cannot say that a network with slower movement of nodes achieves a better through-
put than one with faster movement of nodes. In other words, to reduce the volume of
control packets that needs to be exchanged between the source and the destination, all
of the neighboring nodes keep the distance to exchange messages each other irrespec-
tive of node velocity.

Fig. 11. The throughput versus node velocity

4.3 The Experiments for Node Density

In this experiment we vary the number of nodes starting from 36 up to 121 to evaluate
the number of RREQ initiated (Fig 12), the amount of energy consumption and the
number of data packets received by the destination (Fig 13). Since the rectangular
field configuration is fixed as 1,500m x 1,500m, the distance between each pair of the
neighboring nodes becomes shorter with a denser network. Depending on the number
of nodes present in the ad-hoc network, we refer to the network as sparse which con-
sists of less than 50 nodes. A dense network consists of more than 100 nodes.

 An AIAD-Based Adaptive Routing Protocol in Ad-Hoc Wireless Networks 11

Through this experiment, the network has a high mobility. In the following results
(Fig 12-13), we omit the results of T-AODV because they are similar to them in the
previous sections. Thus, through this subsection, CP_AODV is directly compared to
the legacy AODV for simplicity and clarity.

Fig. 12. The number of RREQ initiated versus the number of nodes

As in a dense network the number of pairs of the two neighboring nodes which lo-
cate within a possible transmission range of each other increase, the number of RREQ
packets initiated by the source decreases significantly (Fig 12). That means in a dense
network the possibility for finding a neighboring node to forward the request packets
to the destination node is high. It causes the rate of RREQ packets initiated and for-
warded to reduce remarkably. In a dense network, CP_AODV performs similar to
AODV as shown in Fig 13. In addition, in a dense network no clear difference be-
tween them occurs for the amount of energy consumption.

Fig. 13. The throughput versus the number of nodes

For sparse and moderate networks, overall performance of CP_AODV is found to
be better than AODV. For the number of RREQ packets initiated, CP_AODV is 35.2
in average, whereas AODV is 42.7 in average. For both the amount of energy con-
sumption and the number of data packets (Fig 13) CP_AODV is better than AODV
by 13% and 2% in average, respectively. However, as the node density increases such
the differences between them decreases. Thus our proposed method can achieve a
better result with a sparse and moderate network than legacy AODV.

12 Y.-S. Hong and K.-Y. Lee

5 Concluding Remarks

We proposed a control packet minimized AODV protocol for rapidly changing the
network topology in ad-hoc wireless networks due to node mobility. During the route
discovery process, the volume of the control packets increases with the changes in the
network topology due to the movement of nodes. To reduce them significantly, more
realistic estimation of NTT is needed. To minimize the flooding of control packets, a
NTT should be adjusted smoothly based on AIAD technique. CP_AODV protocol
provides good improvement in terms of the number of control packets, the amount of
energy consumption, the throughput and the number of data packets received by the
destination, compared to the legacy AODV and the modified AODV with timestamp
technique. These results have been obtained under three distinct metrics; node mobil-
ity, node velocity and node density. However, in a dense network, CP_AODV
performs similar to AODV, whereas it achieves a better result with a sparse and mod-
erate network.

References

1. Corson, S., Macker, J.: Mobile Ad hoc Networking (MANET): Routing Protocol Perform-
ance Issues and Evaluation Considerations. RFC 2501 (1999)

2. Royer, E.M., Toh, C.-K.: A review of current routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications Magazine, 46–55 (1999)

3. Toh, C.K.: Ad-hoc Mobile Wireless Networks: Protocols and Systems. In: ACM SIG-
COMM. Prentice Hall PTR (2002)

4. Perkins, C.: Performance Comparison of Two On-Demand Routing Protocols for Ad-hoc
Networks. In: Proc. of the IEEE Infocom, pp. 3–12 (2000)

5. Ad hoc On-Demand Distance Vector (AODV) Routing (RFC 3561),
http://www.faqs.org/rfcs/rfc3561.html

6. Carlberg, K., Crowcroft, J.: Building Shared Trees Using a One-to-Many Joining Mecha-
nism. ACM Computer Communication Review 27(1), 5–11 (1997)

7. Hassan, J., Jha, S.: Optimizing expanding ring search for multi-hop wireless networks. In:
GLOBECOM, pp. 1061–1065 (2004)

8. Tripathi, S.M., Ghosh, R.K.: An Implementational Study of Certain Heuristics for the Per-
formance Enhancements of AODV. In: Proc. of Euro-Micro Workshop on Parallel, Dis-
tributed and Network-based Processing, pp. 395–402 (2002)

9. Lee, J., Park, H., Lee, K., Suk, K.: Performance Improvement of AODV Routing Algo-
rithm Using Timestamp. Journal of Korea Information and Communication Society (do-
mestic) 31(8), 830–836 (2006)

10. Kim, H.-c., Chunng, S.-m.: A study of Optimization using state space survey in ad hoc net-
work. Journal of Korea Institute of Military Science and Technology (domestic) 8(4), 68–
76 (2005)

11. Park, I., Pu, I.: Energy Efficient Expanding Ring Search. In: 1st ASIA Int. Conf. on Mod-
eling & Simulation (AMS), pp. 198–199 (2007)

12. http://www.scalable-networks.com

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 13–23, 2008.
© IFIP International Federation for Information Processing 2008

Adaptive Neighbor Selection for Service Discovery in
Mobile Ad Hoc Networks*

Eunyoung Kang1, Yongsoon Im2, and Ungmo Kim1

1 School of Computer Engineering, Sungkyunkwan University,
440-776, Suwon, Gyeonggi-do, Korea

{eykang,umkim}@ece.skku.ac.kr
2 School of Broadcasting, Kookje College,

459-070, Pyeongtaek, Gyeonggi-do, Korea
ysim@kookje.ac.kr

Abstract. Service discovery to search for an available service in a mobile ad-
hoc network is an important issue. Although mobile computing technologies
grow ever more powerful and accessible, MANET, consisting of mobile de-
vices without any fixed infrastructure, has such features as high mobility and
resource constraints. Given these features, the costs of service discovery in mo-
bile ad-hoc networks must be lower than those of service discovery in conven-
tional fixed networks. In this paper, we design and evaluate a service discovery
scheme to effectively discover services by using only local information in a
mobile ad hoc network. Our service discovery protocol is based on the concept
of peer-to-peer caching of service advertisement and node ID-based forwarding
of service requests to solve these problems. Our protocol is that physical hop
counts and the number of messages exchanged have been significantly reduced,
since it does not require a central lookup server and does not rely on multicast-
ing and flooding. The simulation results show that, in the proposed scheme,
physical hop counts and the number of messages exchanged have been signifi-
cantly reduced, compared with the other protocol.

Keywords: Service discovery, Peer-to-Peer Caching, MANET, Message
Delivery.

1 Introduction

A mobile ad-hoc network (MANET) autonomously composed of mobile nodes inde-
pendent of the existing wired networks or base stations has recently attracted substan-
tial interest from industrial or research groups. Because it lacks infrastructure support,

* This work was supported in part by the MKE(Ministry of Knowledge Economy), Korea,

under the ITRC(Information Technology Research Center) support program supervised by
the IITA(Institute of Information Technology Advancement, IITA-2008-C1090-0801-0028)
and by Foundation of ubiquitous computing and networking project (UCN) Project, the Min-
istry of Knowledge Economy(MKE) 21st Century Frontier R&D Program in Korea and a
result of subproject UCN 08B3-B1-10M.

14 E. Kang, Y. Im, and U. Kim

each node acts as a router, forwarding messages for other nodes [1], [2]. In accor-
dance with these trends, such mobile devices as PDAs, handheld devices and note-
book computers have rapidly evolved. Due to the development of those mobile
devices increasing user demand, file sharing or service discovery is emerging as an
important issue.

With regard to file sharing or service discovery, there have been lots of researches
on wired network P2P systems. Examples of representative unstructured P2P systems
include Gnutella [3] and KaZaA [4]. Because Gnutella uses centralized directory
services, it can easily find the location of each directory. But it causes a central direc-
tory server to produce a number of query messages, incurring bottlenecks. On the
other hand, such structured P2P systems as Chord [5], CAN [6], and Pastry [7] are
based on distributed hash tables (DHTs). A DHT-based overlay network makes out a
table for searching by using a file and a key value obtained as a result of applying the
file to its hash function. It is effective for peers involving themselves in a network to
distribute and save the whole file information for searching because such searching is
based on the key value corresponding to the file.

Notwithstanding advantages as demonstrated above, there is little application of
these technologies to a mobile ad-hoc network. It is difficult to apply P2P applications
based on a fixed network environment to ad-hoc networks different from those fixed
wired networks, because their nodes are free to move. Although mobile computing
technologies grow ever more powerful and accessible, mobile devices have a lower
level of processing capacity and use batteries of limited power. They consume sub-
stantial power when they exchange messages. In this sense, it is requirement that costs
are reduced for P2P applications with mobile devices in a wireless network. An ad-
hoc network enables reduction of energy consumption, and reduction of wireless
bandwidth needed for transmission, by reducing query messages among P2P applica-
tions in the network.

To solve these problems, this study proposes an improved service discovery proto-
col which is based on the concept of peer-to-peer caching of service advertisement
and the lower node ID-based forwarding of service requests. First, it listen service
information from neighbor node and store service information in own local service
cache for the purpose of caching service advertisement. Second, it utilizes the lower
node ID scheme to efficiently discover service information in MANET. Regarding
lower ID delivery, a node with lower ID receives information from another node since
messages are transmitted to the node of lower ID. The node of the lowest ID operates
as a distributed index server. The number of messages exchanged in a network and
average hop counts between a service requester and a service provider are reduced
since the probability of responding service messages increases. The results of simula-
tions showed that the proposed scheme reduced total network cost and power con-
sumption by reducing messages and average hop counts(query delay), and improving
response time, by comparison with any other system.

The remainder of this paper is organized as follows: in Section 2, the existing vari-
ous approaches for service discovery are covered; Section 3 gives an explanation to
the proposed service discovery architecture; an analysis of the architecture and its
validity are exploited in Section 4; Finally, Section 5 concludes this paper, proposing
the future study.

 Adaptive Neighbor Selection for Service Discovery in Mobile Ad Hoc Networks 15

2 Existing Approaches for Service Discovery

Service discovery is an important area of research in wired networks and as well as
wireless networks. There has been studied in the field of wired networks to develop
peer-to-peer architectures as shown in [3-7]. To provide service discovery, the exist-
ing works use P2Ps including Gnutella [3] and KaZaA [4]. The former mainly uses
central directory services. That is, each server identifies their location at which it
registers its own services so that clients find services by sending service request que-
ries to the corresponding directory where their own services are registered. On the
other hand, service discovery protocols such as KaZaA generally use flooding search
protocol, creating lots of query messages. These kinds of networks have to be con-
trolled by a central server, leading to the problem of creating a large number of query
messages. Structural P2P networks, such as Chord [5], CAN [6], and Pastry [7], are
based on DHT in which each service is allocated ID in accordance with available
keys. Due to the dynamic characteristics such as node mobility, resource (CPU,
bandwidth, storage) constraints, and limited transmission range, using it on an ad-hoc
network is not valid solution.

Jini [8], SLP2 [9], Salutation [10], Konark [11], Allia [12], and UPnP [13] are
service discovery architectures of an ad-hoc network. These researches have been
developed over the past few years to efficiently discover wired infrastructure-based
services from wired and as well as wireless platforms. Jini, UPnP and SLP2 are ser-
vice discovery protocols for a one-hop ad-hoc network environment. They are not
suitable for an environment with high mobility, where lots of nodes participate in a
network. In addition, Jini and SLP2 provide centralized service information manage-
ment. Jini registers the service objects of a server through lookup services, and SLP2
manages the service information of a server through directory agents. On the other
hand, UPnP, Saluatation, Konark, and Allia collect and manage information at their
own cache through service advertisement based on a P2P system. Regarding Konark,
multicast groups forwards messages. In Allia, various alliances among nodes are
formed to forward messages to allied nodes. GSD [14] is based on group-based intel-
ligent forwarding of service requested. The group means a service group to which the
requested service belongs. They selectively forwards the request to neighboring nodes
belongs to one of those groups. However, a node that has high degree of node connec-
tivity often broadcast to neighboring nodes.

3 Proposed Service Discovery Architecture

3.1 Single Mobile Device Architecture

Fig. 1 shows components included in a single mobile device and the proposed service
discovery architecture. The service discovery architecture is composed of 3 layers:
application layer, service management layer and network communication layer.

Application layer provides users with applications such as audio-vide player, event
alarm, network storage, etc.

16 E. Kang, Y. Im, and U. Kim

Service management layer provides services related to discovery. If a requested
service has not been found out in local cache, a service request message is sent to
forwarding manager to start service discovery.

SD Application

TCP/IP Layer

Policy Manager
Forwarding

Manager

Service Discoverer

Service Registry
Service

Advertisement

Wireless Link Physical Network

Cache Manager

Service Management
Layer

Network Communication
Layer

Application Layer

Fig. 1. Service Discovery Architecture

Forwarding manager plays a role in carrying service advertisement messages and
request messages. Service discoverer picks out the shortest shortcut of neighboring
nodes, by using service discovery protocol proposed in this paper to carry a request
message. That is, a node with the shortest shortcut to a destination on those paths is
chosen to carry service request message. Policy manager plays a role in controlling
nodes through their current policies which describe service advertisement preference
or replacement strategy or refresh rate, TTL(time-to-live).

Although whatever routing protocol may be used in the network communication
layer, this paper uses on-demand AODV [15].

3.2 System Model

We consider a MANET that is a self-organized network of mobile nodes comprising
such small mobile devices as PDAs, handheld devices, and notebook computers,
which are connected with via wireless links.
The system model is as follows:

Mobile nodes are free to move at random, comprising a dynamic topology net-
work. Each mobile node in the network has its own unique node ID. A file also has a
unique file ID.

4 Proposed Service Discovery Protocol

This section describes cooperative neighbor caching of service information, the lower
ID-based service discovery protocol, and cache management, for mobile ad-hoc net-
works.

 Adaptive Neighbor Selection for Service Discovery in Mobile Ad Hoc Networks 17

4.1 Cooperative Neighbor Caching of Service Information

Our model is based on the concepts of peer-to-peer caching of service advertisement.
A service provider saves information about services or files it provides at its local
cache, then, advertises such service or file information to its neighboring node in
accordance with the delivery scheme. All mobile nodes in a network serve as inter-
mediate nodes, in accordance with the delivery scheme. This is relay messages, which
are transmitted via cooperation with neighboring nodes, within the transmission range
of a wireless network. Nodes in a network save and manage information received to at
their local cache, for a specified period. We call this cache Service Routing Cache
(SRC), in which each entry contains information such as; node Id, IP address, service
name, power and ttl. Each node as a service provider acts both a server and a client
when it requests a needed service. In MANET, we use AODV, which is well-known
as a routing protocol in a mobile ad-hoc network. ‘Hello’ messages of AODV are
periodical one-hop broadcast to neighboring nodes. To gather information about the
neighbors of each node, we piggyback on hello messages including neighbor informa-
tion, such as node ID, service name, degree of node connectivity, power and time-
stamp. Therefore, we do not use separate messages to obtain information about
neighbors. A neighboring node management table is generated to manage information
about neighboring nodes, based on ‘hello’ messages obtained from them. If there is
not any ‘hello’ message from neighboring nodes after a specified period, they are now
not neighbors, because they have moved. Information about the neighboring nodes is
updated in the neighboring node management table. Nodes recently joining a network
inform of their existence by making a broadcast to their neighboring nodes via ‘hello’
messages. If there is not any ‘hello’ message from neighboring nodes after a specified
period, they are beyond transmission range or have left the network.

4.2 The Lower ID-Based Service Discovery

The basic idea of lower ID scheme is that each node only transmits messages to
neighboring nodes with lower ID, instead of broadcasting them to all neighboring
node. It can be used when the node advertises its service to another node, when a
service requester sends a request message to search for a needed service, and when an
intermediate node transmits the received message to neighbors. A service provider
saves its services in a local cache SRC, and periodically advertises them to neighbor-
ing nodes. Figure 1 shows a simple example of a lower ID scheme.

In Figure 2(a), each node in a network advertises its service to another node on the
network. We suppose that Nodes 1 to 4 have Files A to D, respectively, Node 3
transmits a service advertisement message to its neighboring Node 2 of lower ID.
Then, Node 2 saves information about File C and the address of Node 3 in its local
cache SRC. Node 4 transmits a service advertisement message to its neighboring
Node 2 of lower ID, when Node 2 saves information about File D and the address of
Node 4 in its local cache SRC. Similarly, Node 2 only transmits a service advertise-
ment message to its neighboring Node 1 of lower ID. Iteration of this advertisement
process results in Node 1 having the lowest ID, which no longer transmits SADM

18 E. Kang, Y. Im, and U. Kim

b) Service request delivery & service response

3

21

4B

C:3
D:4

D

C

A

B:2
C:3
D:4

a) Service advertisement delivery 3

21

4B

C:3
D:4

D

C

A

B:2
C:3
D:4

b) Service request delivery & service response

3

21

4B

C:3
D:4

D

C

A

B:2
C:3
D:4

a) Service advertisement delivery 3

21

4B

C:3
D:4

D

C

A

B:2
C:3
D:4

Fig. 2. Lower ID-based Service Advertisement and Service Discovery

Fig. 3. When receive service advertisement message

messages. At that time, Node 1 functions as a distributed index server for file infor-
mation, producing significantly fewer messages than in case of broadcasting. This
policy is associated with a service request message to search for file information. For
example, Node 3 in Figure 2(b) transmits a service request message to its neighboring
Node 2 of lower ID to discover File D. Node 2 contains information about File D,
which implies that the search for File D is a success. In the lower ID delivery scheme,
a node of lower ID acts as a server using message information transmitted in collabo-
ration with its neighboring nodes in a distributed environment, without any central-
ized directory structure. This scheme is efficient because it can transmit messages to a
node of lower ID without flooding in a distributed environment, reducing the trans-
missions and messages used for service discovery. An algorithm for services adver-
tisement is shown in Figure 3 and we show the searching process in Figure 4.

SADM (msg)
//SADM: Service Advertisement Message
save service name and nodeid in local cache SRC;
for each neighbor n in neighboring node management table
 {
 if n.nodeID < current.nodeID
 forward SADM to n.nodeID
 }
}

 Adaptive Neighbor Selection for Service Discovery in Mobile Ad Hoc Networks 19

Fig. 4. An algorithm for service discovery

While a service request message is being forwarded, or when a service requested
by a service provider is found, an available node produces a service response message
based on information about that service. The service response message contains the IP
address of a service that can provide services. Note that there may be several service
response messages. Of service providers receiving these service response messages,
the one with the highest value of service power (slack time) is selected to receive a
service call.

4.3 Cache Management

There is a cache consistency issue in both the lower ID scheme and the higher degree
scheme. Several research works prove that a strong cache consistency is maintained in
the single-hop-based wireless environment [16]. However, it is too expensive to main-
tain strong cache consistency in an ad-hoc network, due to its bandwidth or power
constraints; in fact, a weak consistency model is more attractive [17].

To maintain cache consistency, we use a simple weak consistency model based on
a time-to-live mechanism, in which, if a service entry has not exceeded its service
available time, we call it “valid service entry”, it is considered to have a proper value.
On other hand, if it does, we call it “invalid service entry”, it is eliminated from the
local cache SRC, because services are not effective any more. If a new copy of a node
has a more recent service available time, only its service available time field is
updated, if not, it is dropped. If the cache size has not enough free space that a new
service can not be added, service rarely referred to are deleted or eliminated in accor-
dance with the LRU deletion policy. An algorithm for cache management is shown in
Figure 5.

SRQM (request node ID, servicename)
// SRQM: Service Request Message
// SREM: Service Response Message
//Case 1: The current node has service name
If node has servicename in local cache SRC
 return servicename

reply SREM;
//Case 2: A neighbor node has service name
If one of the neighboring nodes has a service name
 return servicenam

reply SREM;
//Case 3: A SRQM is forwarded to a node of the lower ID
for each neighbor n in neighboring node management table
{
if n.nodeID < current.nodeID

 forward SRQM to n.nodeID
}

20 E. Kang, Y. Im, and U. Kim

Fig. 5. When cache replacement is necessary

5 Results and Analysis of Simulation

In this section, we evaluate the capacity of the lower ID (LD) scheme in MANET.
There will be a comparison of our protocol with a flooding-based system, which is a
conventional search system.

5.1 Environment of Simulation

Simulation studies are performed using NS2 [18], a representative network simulation
tool. AODV protocol is used as a routing protocol, with 1500m�1500m in the size of
network area. Simulation scenarios are created with the number of nodes randomly
distributed in the scenario area. The simulation is carried out with a change in the
number of nodes ranging from 20 up to 100. Random way point model is used as the
mobility model. A mobile scenario for mobile nodes where pause time on average is 2
seconds with average velocity and maximum velocity varying 3 to 20 m/sec and 5 to
30 m/sec, respectively, is designed for evaluating their performance. At the beginning
of each simulation, some nodes are randomly selected out to act as a server. These
selected servers provide randomly selected services. Table 1 shows the values of
factors used in a simulation.

Table 1. Simulation Parameters

Parameter Value
Number of nodes 20 to 100
Network Area (x, y) 1500m x 1500m
Mean query generate time (secs) 5
Hello Message Interval (secs) 5
Routing Protocol AODV
Movement average speed (m/s) 3 to 20
Movement maximum speed (m/s) 5 to 30
Mobility Pattern Random way-point
Duration 300s
Transmission range 250m
Server Rate 30%
Mac Mac/802_11

// When cache replacement is necessary;
If (not enough free space)
 If (there is invalid service entry in the cache SRC)
 then remove a invalid service entry
 else

 remove a valid service entry that has the least
available time

 Adaptive Neighbor Selection for Service Discovery in Mobile Ad Hoc Networks 21

5.2 Results of Simulation

The average search hop count, a measurement standard that evaluates algorithm per-
formance is the number of average hops needed for the search. More nodes cache
more related information, locality and service response will get higher and quicker,
respectively. When a service requester found out available services, the number of
physical hops for paths is reduced, it can quickly find them out without going through
many nodes and that power of node is relatively less consumed. Figure 6 shows
physical hop count from source node to destination node.

0

10

20

30

40

50

60

70

80

20 40 60 80 100

The number of nodes

H
o
p

c
o
u
n
ts

LD flood

Fig. 6. Average physical hop count from source node to destination node

Figure 7 shows the number of messages nodes communicate. In flooding method, a
number of messages are communicated by broadcasting messages for service adver-
tisements and service searches to neighboring nodes, which means that a transmission
of messages is delayed with nodes consuming lots of power.

To inspect the effects of node speed, we run simulation sets that use the two se-
lected service discovery protocols, respectively. In these simulations, the number of
nodes is fixed to 100. Each set includes four subsets of simulations, where average
velocity is set to 5 m/s, 10 m/s, 15 m/s, 20 m/s, respectively. Figure 8 shows the effect

0

50000

100000

150000

200000

250000

300000

350000

20 40 60 80 100

The number of nodes

T
h
e
 n
u
m
b
e
r
o
f
m
e
s
s
a
g
e
s

LD flood

Fig. 7. Message count of sending and receiving

22 E. Kang, Y. Im, and U. Kim

0

50000

100000

150000

200000

250000

300000

350000

5 10 15 20

move speed (m/s)

T
h
e
 n
u
m
b
e
r
o
f
m
e
s
s
a
g
e
s

LD flood

Fig. 8. Message count of sending and receiving under different node speed

of node speed on the number of messages of sending and receiving. LD scheme has
the lower message under different node speed. Thus, LD scheme is effective protocol
under different node speed.

In our proposed method, the number of messages communicated among nodes is a
little more than flooding-based method, while the proposed method does not incur
countless messages unlike flooding-based service discovery.

6 Conclusion

In this paper, we propose a service discovery scheme to effectively discover services
by using only local information. The proposed scheme is suitable for a mobile ad-hoc
network, where mobile devices with such features as high mobility and resource con-
straints comprise wireless networks without any infrastructure. While the flooding
scheme incurs high costs in MANET, since there are lots of messages exchanged, our
proposed scheme shows in simulation results that it is very effective in significantly
reducing physical hop counts and the number of messages exchanged. A reduction in
physical hop counts means reducing query delay by reducing response time, and a
reduction in the number of messages exchanged implies a reduction in total network
traffic costs and node workloads. Since nodes in MANET dynamically move and the
neighboring nodes are changed in their transmission range. The simulation results
show that, in the proposed scheme, physical hop counts and the number of messages
exchanged have been significantly reduced, compared with the other protocol.

References

1. Toh, C.K.: Ad Hoc Mobile Wireless Networks. Protocols and Systems. Prentice-Hall,
Englewood Cliffs (2002)

2. Meier, R., Cahill, V., Nedos, A., Clarke, S.: Proximity-Based Service Discovery in Mobile
Ad Hoc Networks. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543,
pp. 115–129. Springer, Heidelberg (2005)

3. The Gnutella web site, http://www.gnutella.com
4. The KaZaA web site, http://www.kazaa.com

 Adaptive Neighbor Selection for Service Discovery in Mobile Ad Hoc Networks 23

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord A scalable
peer-to-peer lookup service for internet applications. In: Proceedings of the 2001 confer-
ence on Applications technologies architectures and protocols for computer communica-
tions, pp. 149–160. ACM Press, New York (2001)

6. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content ad-
dressable network. In: Proceedings of the 2001 conference on Applications technologies
architectures and protocols for computer communications, pp. 161–172. ACM Press, New
York (2001)

7. Rowstron, A.I.T., Druschel, P.: Pastry Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

8. Jini Architectural Overview: Technical White Paper, http://www.sun.com/software/
jini/whitepapers/architecture.html

9. Guttman, E.: Service Location Protocol Automatic Discovery of IP Network Services.
IEEE Internet Computing 3, 71–80 (1999)

10. White paper, Salutation Architecture overview (1998),
http://www.salutation.org/whitepaper/originalwp.pdf

11. Helal, S., Desai, N., Verma, V., Lee, C.: Konark-A Service Discovery and Delivery Proto-
col for Ad-hoc Networks. In: Proc. of the Third IEEE Conference on Wireless Communi-
cation Networks (WCNC), New Orleans (March 2003)

12. Helal, O., Chakraborty, D., Tolia, S., Kushraj, D., Kunjithapatham, A., Gupta, G., Joshi,
A., Finin, T.: Allia Alliance-based Service Discovery for Ad-Hoc Environments. In: Sec-
ond ACM International Workshop on Mobile Commerce, in conjunction with Mobicom
2002, Atlanta GA, USA (2002)

13. Understanding UPnP. A White Paper, Microsoft Corporation (June 2000)
14. Chakraborty, D., Joshi, A., Yesha, Y., Finin, T.: Toward Distributed Service Discovery in

Pervasive Computing Environments. IEEE Trans. on Mobile Computing 5(2), 97–112
(2006)

15. Perkins, C.E., Royer, E.M., Das, S.: Ad Hoc On-Demand Distance Vector Routing
(AODV) Routing. RFC 3561, IETF (July 2003)

16. Cao, G.: Proactive Power-Aware Cache Management for Mobile Computing Systems.
IEEE Trans. Computer 51(6), 608–621 (2002)

17. Yin., L., Cao, G.: Supporting Cooperative Caching in Ad Hoc Networks. IEEE Trans. on
Mobile Computing 5(1), 77–89 (2006)

18. NS2 Object Hierarchy, http://www-sop.iniria.fr/planete/software/
ns-doc/ns-current/aindex.html

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 24–37, 2008.
© IFIP International Federation for Information Processing 2008

A Formal Approach to Robustness Testing of Network
Protocol

Chuanming Jing1,3, Zhiliang Wang2,3, Xia Yin1,3, and Jianping Wu1,2,3

1 Department of Computer Science & Technology, Tsinghua University
2 Network Research Center of Tsinghua University

3 Tsinghua National Laboratory for Information Science and Technology,
Beijing, P.R. China, 100084

{jcm,wzl,yxia}@csnet1.cs.tsinghua.edu.cn, jianping@cernet.edu.cn

Abstract. Robustness testing of network protocol aims to detect vulnerabilities
of protocol specifications and implementations under critical conditions. How-
ever, related theory is not well developed and prevalent test practices have defi-
ciencies. This paper builds a novel NPEFSM model containing sufficient inputs
and their processing rules to formalize complex protocol. Based on this model,
Normal-Verification Sequence is proposed to enhance verdict mechanism. We
adopt various strategies to generate anomalous values for some fields of mes-
sages and further apply pairwise combination to systematically mutate mes-
sages. We propose compound anomalous test case to simplify test sequences
and give its generation algorithm. Standard test specification language TTCN-3
is extended to describe compound anomalous test cases. As a case study, we
test OSPFv2 sufficiently with a test system based on extended TTCN-3. Our
method and test system can effectively discover vulnerabilities of protocol im-
plementations as well as their inconsistencies with specifications.

1 Introduction

Network protocols are often partially specified. There are numerous invalid inputs for
protocol implementations and how to handle these inputs is usually unspecified or
specified ambiguously in protocol. Also protocol specifications contain optional re-
quirements specified by “MAY” statements. These two cases provide certain flexibil-
ity to protocol implementations. As conformance testing only verifies whether an
implementation conforms to its specification or not, the capability of error-detection
is limited. National Vulnerability Database [1] reports that about 60% of the software
vulnerabilities detected in 2007 were caused by input validation, format string vulner-
ability and buffer errors. Protocol robustness testing is the test to verify whether IUT
(Implementation under Test) can function correctly in the presence of invalid inputs
or stressful environmental conditions [2]. Robustness testing aims to detect vulner-
abilities of protocol specifications and implementations, including [3]: vulnerabilities
of malformed message parsing; vulnerabilities of state transitions; hole of buffer over-
flow etc. There have been large previous works about robustness testing [4-14]. Al-
though their test practices have found vulnerabilities of protocol implementations,
these approaches have certain limitations: 1) test cases generation lacks guidance of

 A Formal Approach to Robustness Testing of Network Protocol 25

theory; 2) verdict mechanism needs improvement; 3) structure of test case is not op-
timal, resulting in large test costs; 4) test system is not generic to other protocols; 5)
most use programming languages (e.g. C) to build test suite, so the readability, exten-
sibility and maintainability of test suite are not good.

To cope with these deficiencies, we build a novel Nondeterministic Parameterized
Extended Finite State Machine model. Our model has distinct benefits: 1) it contains
sufficient inputs and their processing rules, thus it can guide robustness testing; 2) it
supports variables, parameters of inputs/outputs and operations based on these values,
thus it can model complex protocols. Based on this model, Normal-Verification Se-
quence is proposed to enhance verdict mechanism. Data-driven robustness testing
focuses on inputting various invalid messages. We adopt various mutation strategies
to generate anomalies for some fields of messages and further apply pairwise strategy
[15,16] to systematically import anomalies to mutate multiple fields for each message.
To inject test data efficiently and effectively, compound anomalous test case is pro-
posed to simplify test sequences. The algorithm of test case generation is given.
TTCN-3 [20] is extended to describe compound anomalous test cases. Implementing
the function of generating test data automatically, the extended description is very
simple and convenient to use. As a case study, we test OSPFv2 [21] sufficiently with
a test system based on extended TTCN-3.

The rest of this paper is organized as follows. Related works are introduced in sec-
tion 2. Section 3 proposes NPEFSM model. In section 4, pairwise strategy is used to
combine anomalies and test case generation is discussed. We apply TTCN-3 to ro-
bustness testing and extend it in section 5. In section 6, we test OSPFv2 using our
method. Conclusions and future work are given in section 7.

2 Related Works

Related works can be classified into research on model-based robustness testing [4,5]
and test practices (often called Fuzz testing [6-14]). The model and framework for
robustness testing are not well developed. [4,5] propose a formal framework, but
mutation operations and fault injections are not done automatically. Hence it is
difficult to generate large number of test cases.

Fuzz testing is a black-box testing method by injecting faults. The procedure is to
generate test data, inject test data to IUT and make verdict. Currently, there are two
methods to obtain numerous invalid messages: designing manually using script lan-
guage [6-12]; generating semi-randomly data (e.g. most of tools listed in [13]). Vari-
ous script languages are used to describe invalid messages such as BNF (Backus-Naur
Form) [6], SBNF (Strengthened BNF)[7,8], SCL (Semantic Constraint Language)
[9,10] and XML [11,12]. The production and injection of invalid PDUs are all done
by tools implemented by C or Java. Also, other Fuzzing tools [13] can produce semi-
random messages which are often blind to testing and each tool can only test a certain
protocol due to weak extensibility. Intelligent Fuzzing requires injecting invalid in-
puts on the corresponding state. [7,8,11] all propose state identification by inferring
from I/O sequences logged, but it is not practical for complex protocols. Related
works about verdict mechanism are also not well developed. In test practice, they
observe whether IUT is crashed or monitor the performance (e.g. CPU usage) of IUT

26 C. Jing et al.

under invalid injections. In [10,11], a simple sequence consisting of a valid request
and corresponding reply is used to make verdict after fault injection.

So, it is highly desirable to have a formal approach to robustness testing. In our
previous work [17], single-field mutation testing is studied. Based on this work, we
give our full solutions for protocol robustness testing in this paper.

3 Formal Model and Testing Framework

3.1 Model Definition

Usual protocol specifications include variables and operations based on variable values.
Extended Finite State Machine (EFSM) can be used in this situation. However, it is still
not powerful enough to model some protocol systems where there are parameters asso-
ciated with inputs and have effects on the predicates and actions of transitions [18].
Hence Parameterized Extended Finite State Machine (PEFSM) [18] is used to model
protocol specifications. Robustness testing requires injecting many invalid messages. As
most invalid messages and their processing rules are not well prescribed, state transi-
tions after these invalid injections are often nondeterministic. So, we build a model for
protocol robustness testing using NPEFSM (Nondeterministic Parameterized Extended
Finite State Machine). Our model covers more detailed and precise nondeterministic
features than traditional nondeterministic FSM and EFSM model.

Definition 1: NPEFSM for Protocol Robustness Testing
A Nondeterministic Parameterized Extended Finite State Machine (NPEFSM) is a 6-
tuple M=<I, O, X

uur
, S, s0, T>, where:

1. I={ 1 1 2 2(), (),..., ()p pi v i v i v
ur uur uur

} is the input alphabet with parameters v
r

; each input symbol

()k ki v
uur

(1≤k≤p) carries a vector of parameter values kv
uur

;

Also, we define I=Ispec∪Iunspec. Ispec includes inputs that are prescribed in protocol
specification and composed of valid PDUs as well as some invalid PDUs. Iunspec in-
cludes numerous inputs that are not prescribed definitely in protocol specification
and composed of various invalid PDUs.

2.O= 1 1 2 2{ (), (),..., ()}q qo w o w o w
uur uur uur

is the output alphabet with parameters w
ur

; each output sym-

bol ()k ko w
uur

(1≤k≤q) carries a vector of parameter values kw
uur

.

3. X
uur

is a vector denoting a finite set of variables with default initial values.
4. S is a finite set of states, S=Sspec, Sspec includes states prescribed in protocol specifi-

cation. We introduce and define S?={s?i | i=1,2,…}, s?1, s?2…are all nondeterminis-
tic states after nondeterministic or undefined transitions but within a range of states
according to corresponding ambiguous protocol specification, i.e. for i=1, 2,…, s?i

∈Si ⊆Sspec. So, S =Sspec =Sspec ∪ S?.
5. s0: initial state.

6. T: a set of transitions. For t∈T, t = () / () / (, ()) / (, (), ()) *i v o w P X i v A X i v o ws s⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
r ur uur r uur r ur

(s∈S, s*∈S) is
a transition where s and s*are the starting and ending state of this transition respec-
tively; ()i v

r
/ ()o w

ur
is the input/output with parameters; (, ())P X i v

uur r
 is a predicate of the

variables and input parameters; the action (, (), ())A X i v o w
uur r ur

 is an operation on variables

 A Formal Approach to Robustness Testing of Network Protocol 27

as well as output parameters and this operation is based on current variable values
and input parameter values.

T=Tdeter∪Tnondeter=Tdeter∪(Tnondeter-spec∪Tnondeter-unspec). Each transition of Tdeter is

uniquely deterministic in protocol. Tdeter=∪t: sj
() / () / (, ()) / (, (), ())j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
r ur uur r uur r ur

sk,
where sj∈Sspec, sk∈Sspec; ()ji v

r
∈Ispec; ()jo w

ur
∈O or ()jo w

ur
=Null. Each of Tnondeter-spec is

nondeterministic but specified clearly in protocol specification. Tnondeter-spec=∪t:sj

() / () / (, ()) / (, (), ())j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
r ur uur r uur r ur

s?k, where sj∈Sspec, s?k∈S?; ()ji v
r

∈Ispec; ()jo w
ur

∈O

or ()jo w
ur

=Null. Each of Tnondeter-unspec is nondeterministic and unspecified or specified

ambiguously in specification. Tnondeter-unspec=∪t: sj
() / / /ji v true− −⎯⎯⎯⎯⎯→
r

s?k, where sj∈Sspec,
s?k∈S? ; ()ji v

r
∈I, output and action are unspecified or specified ambiguously. □

Figure 1 shows a part of NPEFSM for OSPFv2 [21] Neighbor State Machine, predi-
cates and actions are omitted. An example of transition is given in Table 1. The inputs
and outputs are parameterized Database Description Packets (DDP). The parameters
of DDP are DD sequence number (denoted as Seq) and I/M/MS (denoted as Ims).
Predicate includes sequence number checking, I/M/MS checking and other valida-
tions. y is a variable used to check sequence number.

Figure 2 shows two kinds of state transitions under invalid injections. Figure 2(a)
shows that after receiving an invalid input ik (ik∈Ispec), si transits to sj according to related
description in protocol specification. For example, OSPFv2 specification prescribes that
receiving duplicate DDP will trigger “SeqNumberMismatch” and transit the state from
“Exchange” or higher to “Exstart”. Figure 2(b) shows that si transits to state s?k

(s?k∈Sk={ski | i=1,2,…}⊆Sspec) because the transition after receiving ij (ij∈I) is prescribed
indeterminately, ambiguously or even not prescribed in protocol specification. For exam-
ple, during Database Exchanging, after receiving DDP, whether to check the syntax of
each field of DDP.LSAHeader is not specified definitely. Suppose this syntax error:
LSAHeader.LinkStateID=“FFFFFFFF”, if IUT checks this field, event “SeqNum-
berMismatch” will be triggered to transit the state to “Exstart”. Otherwise, exchanging
will go on until this fault can be found (maybe in LSA requesting process). So, after
receiving ij (DDP), s?k∈Sk={sk1 =“Exstart”, sk2 =“Exchange”} and tj∈Tnondeter-unspec.

Table 1. An Example of Transition

Name TExchange-Exchange-1
Start State Exchange
End State Exchange
Input DDP(Seq1, Ims1)
Output DDP(Seq2, Ims2)
Variables y,…
Predicate (Seq1==y)&&

(Ims1==011)&&…
Action Seq2=y; y=Seq1+1;...

Fig. 1. A Part of NPEFSM for OSPFv2
Neighbor State Machine: Database Exchange

28 C. Jing et al.

(a) (b)

Fig. 2. (a) State transition prescribed definitely in protocol specification after invalid input
(b) State transition prescribed ambiguously, indeterminately, or even not prescribed in protocol
specification after invalid input

Some “MAY” statements in protocol specification also specify transitions belong-
ing to Tnondeter-spec. We omit further exemplification.

Some special inputs can transit each of several states (denoted as 'S) to the same
state, we propose Forced Transition as follows:

Definition 2: Forced Transition
Let S’ ⊆ Sspec and sj ∈ Sspec.

(∀s∈S’)→sj is a Forced Transition, iff, ∃ ()ji v
r

∈Ispec, such that ∀s∈S’,

s () / / /ji v true− −⎯⎯⎯⎯⎯→
r

sj.
Especially, if sj = s0, such a forced transition is also called Reset Transition.
In Figure 3, if Forced Transition exists, s?k can receive certain input and transit to a

deterministic state sj according to Definition 2. In the former example about OSPFv2
Data Exchanging, event “SeqNumberMismatch” can force the machine to transit from
s?k to sj (sj =“Exstart”), whether s?k =“Exstart” or “Exchange”.

3.2 Robustness Requirement and Normal-Verification Sequence

The structure of a test case in conformance testing can be described as follows: Test
Case=<State Leading Sequence, Executing Sequence, State Verification Sequence>
[17, 18]. In robustness testing, we introduce a term called “anomalous test case”
which can inject invalid data on corresponding state and make verdict. Instead of
State Verification Sequence of conformance testing, Normal-Verification Sequence of
robustness testing is executed to verify whether the state machine works properly. If it
returns “Fail”, we conclude that IUT behaves abnormally and has poor robustness.
The structure of an anomalous test case can be described as follows: Anomalous Test
Case=<State Leading Sequence, Invalid PDU Inputting, Normal-Verification Se-
quence>. The first step of robustness testing is to construct robustness requirement. In
this paper, we use an intuitive and practical robustness requirement that IUT must
keep normal state and continue normal operations conforming to protocol specifica-
tion under invalid injections. According to the state transitions shown in Figure 2, we
propose two types of Normal-Verification Sequences as follows:

 A Formal Approach to Robustness Testing of Network Protocol 29

Normal-Verification Sequence_1
Suppose at state si, an invalid PDU ()ji v

r
 is received and ()ji v

r
∈ Ispec .

If t: si
() / () / (, ()) / (, (), ())j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
r ur uur r uur r ur

sj, i.e. t∈Tdeter. Normal-Verification Se-
quence= state verification sequence of sj.

Normal-Verification Sequence_2
Suppose at state si, an invalid PDU ()ji v

r
 is received and ()ji v

r
∈I.

If t: si
() / () / (, ()) / (, (), ())j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→
r ur uur r uur r ur

s?k or t: si
() / / /ji v true− −⎯⎯⎯⎯⎯→
r

s?k , i.e.
t∈(Tnondeter-spec∪Tnondeter-unspec)=Tnondeter. Normal-Verification Sequence = state identi-
fication sequence of s?k.
State identification [18][19] will cause the robustness test sequences to be very

complex, so we define another Normal-Verification Sequence to approximately re-
place Normal-Verification Sequence_2:

Normal-Verification Sequence_2-1
After receiving invalid PDU, the ending state transited to is s?k∈S? and s?k∈Sk={ski |
i=1,2,…}⊆Sspec, If there exists Forced Transition: (s?k∈Sk)→sj, Normal-Verification
Sequence ≈ ((s?k∈Sk)→sj) + (state verification sequence of sj).

Forced Transition and Reset Transition are very common in network protocols. For
OSPFv2, event “1-Way”, “KillNbr”, “SeqNumberMismatch” and “BadLSReq” can
trigger Forced transition. So Normal-Verification Sequence_2-1 can be widely used.

A PEFSM can be unfolded into a FSM. In this paper, we do not discuss the con-
struction of state verification sequence for FSM or PEFSM model which is a classical
problem in conformance testing [18]. We further illustrate our robustness require-
ment. For anomalous test cases using Normal-Verification Sequence_1, robustness
requirement is the same with conformance testing. For test cases using Normal-
Verification Sequence_2-1, robustness requirement can be illustrated using a Prob-
abilistic Finite State Machine (PFSM) shown in Figure 4. s* is a trap state which is not
an element of Sspec. P1 is the probability of state transition from si to s* after receiving
an invalid input. P2 is the probability of state transition from s* to s* after receiving an
input which is used to trigger Forced Transition. Strict robustness requirement dis-
cussed before is P1=0. In order to ease test practices, we adopt P1⋅P2=0 as our robust-
ness requirement.

Fig. 3. Forced Transition of s?k Fig. 4. Robustness requirement analysis

30 C. Jing et al.

4 Test Case Generation

4.1 Invalid Inputs Generation

A PDU is composed of several fields denoted as f1, f2…Invalid PDUs can be syntacti-
cally or semantically invalid. The former disobey protocol specification data formats.
The latter have valid syntax but conflict with protocol state, configuration and poli-
cies. We mutate several valid inputs to generate many messages either syntactically
invalid or semantically invalid.

Single-field mutation rules: FunFieldMutation()
We define some typical invalid field values which attackers tend to exploit:

1) Field value mutation rules
In [17], we define Boundary value; Field values mismatch; Format error; Length,
Checksum and Encapsulation error. We also define input partition values: {Min,
Min+(Max-Min)/n, Min+2*(Max-Min)/n,…,Max}(Suppose Field fi∈(Min,Max)). n is
a parameter set by tester. All these values can be used to replace a valid field value.

2) Field mutation rules:

 Removal and Addition: a field of PDU is removed or added;
 Overflow: one field is replaced with another field with bigger bytes;
 Permutation: sequence of fields in PDU changes.

Multi-field mutation rules using pairwise algorithm
Some fields of one message may have consistency with each other. Value changing of
one field may influence values of other fields. Also, protocol implementations may
not parse fields of receiving message in the sequence of one by one. So it is necessary
to inject messages whose multiple fields are invalid. Suppose 8 fields of one PDU will
be mutated and each field has 5 invalid values, total of mutated PDUs will be
58=390625. So exhaustive testing is impractical. In this paper we introduce pairwise
combination which can guarantee that each pair of faults between any two fields is
covered by at least one combination. Pairwise combination is a good trade-off be-
tween test effort and test coverage. Algorithm 1 adopts a heuristic pairwise algorithm
called In-Parameter-Order [15,16] to generate test data.

Algorithm 1. pairwise (F, Q)

Input: F={f1, f2,…, fn}; Q={
1 2
, ,...,

nf f fq q q }; /*each
if

q is a set of values for field fi. */

Output: T={T1,T2,…Tm}; /*each Ti ={vf1, vf2,…,vfn}, where
jfv ∈

jfq (1≤j≤n), i.e. Ti is a n-

dimension vector containing values for field f1, f2,…, fn, respectively.*/
1 T={(v1, v2) | v1and v2 are values of f1and f2 ,respectively};
2 if (n ==2) return T;
3 for each field fi, i=3,4,…,n do
4 T= In-Parameter-Order (T, Q, fi); /*see references [15,16] */
5 return T;

 A Formal Approach to Robustness Testing of Network Protocol 31

Then we give an example. Suppose F={f1, f2, f3, f4}, each has four unsigned bound-
ary values and one 2-partition values.

1f
q =

4f
q ={00,01,7F,FE,FF};

2f
q =

{0000,0001,7FFF,FFFE,FFFF};
3f

q ={000000, 000001, 7FFFFF, FFFFFE, FFFFFF}.

Applying Algorithm 1, we can get test data shown in Figure 5:

Fig. 5. Test generation using pairwise combination

In above example, compared to the exhaustive combination (test data set total:
54=625), Algorithm 1 only generates 32 test data and each pair of faults between any
two fields is covered by at least one PDU.

4.2 Robustness Test Case Generation

According to the definition of robustness testing (see section 1), the quantity and
variety of invalid messages are important criterions for testing. There are numerous
invalid PDUs and how to inject needs to be well studied. So we propose compound
anomalous test case which can also simplify test sequences: 1) One compound
anomalous test case focuses on several fields of one PDU (the combination of these
fields can be denoted as Fl⊆PDU). If the verdict is “Fail”, it means IUT cannot parse
Fl with robustness; 2) Two or more anomalous messages with different invalid values
of Fl should be injected in one compound anomalous test case. Values of other fields
of these messages cannot be mutated and keep valid.

If |Fl|=1, it means only one field is mutated and the corresponding test case belongs
to single-field robustness testing. If |Fl|≥2 (means multiple fields are mutated), this
test case belongs to multi-field robustness testing. For test case returning “Fail” in
multi-field testing, we should decompose it into several separated test cases executed
further to analyze why it fails. As robustness testing is often done after conformance
testing, the pass rate is often high, thus test execution of separated test cases will not
consume much work. For test cases using Normal-Verification Sequence_1, the for-
mats of Compound Anomalous Test Cases are constructed as follows:

Compound Anomalous Test Case-1(m, pdu.Fl) = < State (s0 to si) Leading Se-
quence, {Invalid pdu Inputting, State (sj to si) Leading Sequence}*m, State Verifica-
tion Sequence of si >.

Where, “{}*m” means the sequences contained in “{}” are executed m times. Also,
the fields under test must be mutated before each executing loop. m means the number
of invalid messages generated by mutation rules for pdu.Fl.

32 C. Jing et al.

For test cases using Normal-Verification Sequence_2-1, the formats of Compound
Anomalous Test Cases are constructed as follows:

Compound Anomalous Test Case-2 (m, pdu.Fl) = <State (s0 to si) Leading Se-
quence, {Invalid pdu Inputting, State(s?k to sj)Leading Sequence (suppose Forced
Transition (s?k∈Sk)→sj exists), State(sj to si) Leading Sequence }*m, State Verifica-
tion Sequence of si >.

Figure 6 shows structures of compound anomalous test cases. Algorithm 2 is de-
fined for Compound Anomalous Test Case-1 generation. We omit the algorithm of
Compound Anomalous Test Case-2 generation due to space limitation.

(a) Compound Anomalous Test Case-1 (b) Compound Anomalous Test Case-2

Fig. 6. Two Types of Compound Anomalous Test Cases (pdu.Fl is under test)

Algorithm 2: Compound Anomalous Test Case-1 generation

Input: PDU pdu={f1, f2,…, fn}; /* pdu: a valid PDU */
Fl ⊆ pdu ; /* Fl :a fields set under test */

si, sj;/*inject anomalies on state si and the state transits to sj in protocol specification*/
Output:

lFTestCase ; /* test case for pdu.Fl */

Initial Value:
lFTestCase =Null;

1 Q={
1 2
, ,...,

nf f fq q q };
1 2
, ,...,

nf f fq q q =Null ; /*
if

q is a set of values for field fi */

2
lFT ={T1,T2,…Tm}; T1,T2,... Tm=Null; /* see Algorithm 1 in section 4.1*/

3 For each fk ∈Fl do

4
kf

q = FunFieldMutation (fk); /*generate anomalous values, see section 4.1*/

5 If (|Fl|=1) /*single-field robustness testing*/
6

lFT = Q;

7 If (|Fl|≥2) /*multi-field robustness testing*/
8

lFT = pairwise (Fl, Q); /* see Algorithm 1 in section 4.1*/

9
lFTestCase .add(State (s0 to si)Leading Sequence);

10 For each Th ∈ lFT do

11 replace each field of pdu.Fl with values in Th, respectively;
12

lFTestCase .add (Invalid pdu Inputting, State (sj to si) Leading Sequence);

13
lFTestCase .add(State Verification Sequence of si);

14 Return
lFTestCase ;

 A Formal Approach to Robustness Testing of Network Protocol 33

Compound Anomalous Test Case-1 is similar to test case of conformance testing
and we do not discuss its property. For Compound Anomalous Test Case-2, different
invalid PDU is injected in each loop. We have deduced that the “Fail” probability for
each loop is P1⋅P2 (see section 3.2 and Figure 4).Then the “Fail”probability of Com-
pound Anomalous Test Case-2 can be deduced:

()failP m =1-
1

m

i=
∏ (1-Pi_1 ⋅Pi_2) (where Pi_1 ⋅Pi_2 is the fail rate for ith invalid injection)

From this equation, we can deduce that the fail rate increases as m increases. An in-
tuitive reason is that the more invalid data are injected, the more holes may be discov-
ered.

5 TTCN-3 Extensions and Test System

TTCN-3 [20] is developed by ETSI (European Telecommunications Standards Insti-
tute) and standardized by the ITU-T. Test suite described by TTCN-3 has good read-
ability, extensibility and maintainability. But TTCN-3 is not flexible: 1) TTCN-3
cannot support mutation operations well, so we should define thousands of invalid test
data using TTCN-3 [17]; 2) Using TTCN-3, it is difficult or even impossible to give
the description of compound anomalous test cases.

We extend TTCN-3 in syntax for robustness testing as follows: 1) Add a new key-
word “pairwise” which represents the complex algorithm of compound anomalous
test case generation; 2) Add a new keyword “count”, the value behind this keyword
means the number of mutations for one field; 3) In the description statement using
“pairwise”, each field of the message in format of “global template” can be modified
to be invalid so test suite need define only a little data.

If the parameters of “pairwise” statement are only for one field of one message, the
test case belongs to single-field testing. Otherwise, it belongs to multi-field testing
and pairwise combination will be used. Similar to extension using “pairwise”, we can
make extensions to accomplish other mutations rules (e.g. Removal, Overflow) de-
fined in section 4.1. We omit these due to space limitation. “pairwise” statement
supports describing two types of Compound Anomalous Test Cases. We give a de-
scription of test case belonging to Compound Anomalous Test Case-2:

Most anomalies are generated automatically according to FunFieldMutation() (see sec-

tion 4.1). “octetstring n count m” means generating invalid data set which consists of

testcase Onebyone_HL1_Opt() runs on MyTestComponentAsync
system SystemComponent {
map(mtc:MyPortAsync, system:SystemPort1);
P1();
pairwise HL1(Mask octetstring 4 count 5 record_value;

Hint octetstring 2 count 6;
Opt octetstring 1 count 8) {

Onebyone_HL1();
}
Normal_Verification();

}

34 C. Jing et al.

4 boundary unsigned values and m-4 partition values (see section 4.1), each is in the
format of n octetstrings. Some anomalies can be defined manually in “Const Record”
(e.g. “record_value” in above statements). When above statements (other keywords in
bold are introduced in [20]) are compiled, invalid data for field HL1.Mask, HL1.Hint
and HL1.Opt are generated (e.g.

Maskfq ={4 boundary values, (5-4) partition values and

values in “record_value”}), further pairwise algorithm Tpairwise(F(fMask, fHint, fOpt)) is
executed to generate invalid messages. “Onebyone_HL1” is a function using Forced
Transition. During test case executing, “Onebyone_HL1” will be executed continually
for many loops until all the invalid test data are injected to IUT. Finally, Nor-
mal_Verification() is executed to make verdict.

Based on TTCN-3 and its extension, we have developed a test system called
PITSv3 which is introduced sufficiently in [23]. We omit this due to space limitation.

6 Case Study: OSPFv2

OSPFv2 [21] defines five kinds of messages including: Hello, Database Description
(DDP), Link State Request (LSR), Link State Update (LSU) and Link State Acknowl-
edgment (Ack). It also defines five kinds of Link State Advertisements (LSAs). We
design test suites for single-field and multi-field robustness testing respectively. We
use Forced Transitions (e.g. “1-Way”, “SeqNumberMismatch” and “BadLSReq”
[21]) to construct Normal-Verification Sequence.
 Table 2 lists test suite. Invalid messages are injected on corresponding state. In test
practice, we use PITSv3 to connect with IUT through a link. We choose Zebra-0.94
[22] installed in Linux as IUT.

Table 2. Test suite of compound anomalous test cases for OSPFv2

Test Content Number
Test Group (State / Invalid PDU received) Single-field Multi-field

OSPF Head Init / Hello 14 8
Hello 2-way / Hello 16 6
DDP0 Exstart / DDP0(without LSA Header) 8 4
DDP1 Exchange / DDP1(include one LSA Header) 22 12
LSR Exchange / LSR 6 2
Ack Exchange / Ack 16 6
LSA_HEAD Exchange / LSU(include Router_LSA) 14 10
LSU_RLSA Exchange / LSU(include Router_LSA) 16 10
LSU_NLSA Full / LSU (include Network _LSA) 4 5
LSU_S3LSA Full / LSU (include Type3 Summary _LSA) 4 1
LSU_S4LSA Full / LSU (include Type4 Summary _LSA) 4 1
LSU_AsLSA Full / LSU (include As External_LSA) 6 2

Total 130 67

For single-field testing, we set m with different values using “count” keyword in
TTCN-3 (see section 4.2 and 5). During test, we choose m=5~30. Thus, about
650~3900 invalid messages are injected in total 130 test cases. Test results are shown
in Figure 7 (Fail Rate I). Test verdicts of Fail Rate I base on robustness requirement
(see section 3.2). Fail rate is 5.38% when m=5~20 and it increases to 6.92% when

 A Formal Approach to Robustness Testing of Network Protocol 35

Relation of Fail Rate with m

0

2

4

6

8

10

5 10 15 20 25 30

 m
F

ai
l

 R
at

e
(%

)

Fail Rate I

Fail Rate II

Fig. 7. Test results for single-field robustness testing of Zebra-0.94

m=25, 30. These results indicate that the more invalid data are injected, the more
holes may be discovered (see section 4.2). During test, we also sum up test cases (Fail
Rate II) returning “fail” due to critical vulnerabilities which cause IUT to crash or be
quiescent (IUT may not crash, but can not reply to inputs). Fail Rate II shows that
there are always 4 test cases (fail rate: 3.08%) returning “Fail” due to critical vulner-
abilities as m increases from 5 to 30.

In multi-field testing, we assign m=5 (each field has 5 invalid values). Each test
case can inject about 25~40 messages generated by pairwise algorithm. So invalid
messages injected are about 1675~2680 in total 67 test cases. Test verdicts are based
on robustness requirement (see section 3.2) and the fail rate is 8/67=11.9%.

Based on test results, critical vulnerabilities of Zebra-0.94 are analyzed: 1) Zebra
cannot parse invalid messages with mutated “length” field in OSPF header robustly
and the OSPF routine crashes. Analyzing the source code, we find that the checksum
routine (in_cksum in checksum.c) does not compare the “length” field in OSPF
header with the “length” field in the IP header so that the routine reads past the end of
the heap into unauthorized memory space. 2)LSA header also exists the same vulner-
ability. The LSA checksum routine (ospf_lsa_checksum in ospf_lsa.c) does not verify
the validity of the length field in the LSA header. This occurs only for LSA Header in
LSU packets.

7 Conclusions and Future Work

It is desirable to test the robustness, reliability of network devices. The work and
contribution of this paper are given as follows: we build a novel NPEFSM to effec-
tively guide robustness testing; Normal-Verification Sequence is proposed to enhance
verdict mechanism; we apply pairwise strategy to systematically import anomalies to
mutate messages and further generate compound test cases which can simplify test
sequences; TTCN-3 is extended to describe compound anomalous test cases. While
our approach and test system are generic enough to be applied to all protocols, we
will focus on application layer protocols (e.g. HTTP, SMTP) in future work as they
typically handle human user level inputs that may have more faults. We will also
apply our method to test real-time distributed systems.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under Grant No. 60572082.

36 C. Jing et al.

References

1. National Vulnerability Database, http://nvd.nist.gov/
2. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990, p.

64 (1990)
3. Pothamsetty, V., Akyol, B.: A Vulnerability Taxonomy for Network Protocols: Corre-

sponding Engineering Best Practice Countermeasures. In: IASTED Internet and Commu-
nications conference, US Virgin Islands (November 2004)

4. Fernandez, J.-C., Mounier, L., Pachon, C.: A Model-Based Approach for Robustness Test-
ing. In: The 17th IFIP International Conference on Testing of Communicating Systems
(TestCom 2005), Concordia, Canada, May 30-June 2 (2005)

5. Saad-Khorchef, F., Rollet, A., Castanet, R.: A framework and a tool for robustness testing
of communicating software. In: ACM Symposium on Applied Computing (SAC 2007), pp.
1461–1466 (2007)

6. Oulu University Secure Programming Group. PROTOS (2002),
 http://www.ee.oulu.fi/research/ouspg/protos/index.html

7. Xiao, S., Li, S., Wang, X., Deng, L.: ARF, Cisco Systems, Inc. Fault-oriented Software
Robustness Assessment for Multicast Protocols. In: Proceedings of the Second IEEE Inter-
national Symposium on Network Computing and Applications (NCA 2003) (2003)

8. Xiao, S., Deng, L., Li, S., Wang, X.: ARF, Cisco Systems, Inc. Integrated TCP/IP Protocol
Software Testing for Vulnerability Detection. In: Proceedings of the 2003 International
Conference on Computer Networks and Mobile Computing (ICCNMC 2003) (2003)

9. Turcotte, Y., Tal, O., Knight, S.: Security Vulnerabilities Assessment of the X.509 Proto-
col by Syntax-Based Testing. In: Military Communications Conference 2004 (MILCOM
2004), Monterey CA, October 2004, vol. 3, pp. 1572–1578 (2004)

10. Tal, O., Knight, S., Dean, T.: Syntax-based Vulnerability Testing of Frame-based Network
Protocols. In: Proc. 2nd Annual Conference on Privacy, Security and Trust, Fredericton,
Canada, October 2004, pp. 155–160 (2004)

11. Banks, G., Cova, M., Felmetsger, V., Almeroth, K., Kemmerer, R., Vigna, G.: SNOOZE:
toward a Stateful NetwOrk prOtocol fuzZEr. In: Information Security Conference (ISC),
Samos Island, Greece (September 2006)

12. Neves, N.F., Antunes, J., Correia, M., Veríssimo, P., Neves, R.: Using Attack Injection to
Discover New Vulnerabilities. In: Proceedings of the International Conference on Depend-
able Systems and Networks (DSN 2006), June 2006, pp. 457–466 (2006)

13. FuzzingTools, http://www.scadasec.net/secwiki/FuzzingTools
14. Vasan, A.M.M.: ASPIRE: Automated Systematic Protocol Implementation Robustness

Evaluation. In: Proceedings of the 2004 Australian Software Engineering Conference
(ASWEC 2004), April 2004, p. 241 (2004)

15. Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise testing. In:
Proceedings Third IEEE Intl. High-Assurance Systems Engineering Symp., pp. 254–261
(1998)

16. Tai, K.C., Lei, Y.: A test generation strategy for pairwise testing. IEEE Trans on Software
Engineering 28(1), 109–111 (2002)

17. Jing, C., Wang, Z., Shi, X., Yin, X., Wu, J.: Mutation Testing of Protocol Messages Based
on Extended TTCN-3. In: Proceedings of the IEEE 22nd International Conference on Ad-
vanced Information Networking and Applications (AINA 2008), Japan, pp. 667–674
(2008)

18. Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite-State Machines-A Sur-
vey. Proceedings of IEEE 84(8), 1089–1123 (1996)

 A Formal Approach to Robustness Testing of Network Protocol 37

19. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and
probabilistic machines. In: Symposium on Theory of Computer Science, pp. 363–372.
ACM, New York (1995)

20. ETSI: ETSI Standard ES 201 873-1 V3.2.1(2007-03): The Testing and Test Control Nota-
tion version 3; Part 1: TTCN-3 Core Language. European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France (2007)

21. Moy, J.: OSPF Version 2, RFC 2328 (April 1998)
22. Zebra-0.94, http://www.zebra.org/
23. Yin, X., Wang, Z., Wu, J., Jing, C., Shi, X.: Researches on a TTCN-3-based protocol test-

ing system and its extension. Science in China Series F: Information Sciences (accepted,
2008)

Deadline Probing: Towards Timely Cognitive

Wireless Network

Panlong Yang�, Guihai Chen, and Qihui Wu

Institute of Communication Engineering, PLAUST
Computer Science Department, Nanjing University. Nanjing, Jiangsu Province, China

plyang@computer.org, gchen@nju.edu.cn, qiwu@google.com

Abstract. A confidential and effective probing is fundamental to a co-
operative and cognitive wireless network. Previous seminar works are not
deadline sensitive, and often suffer from highly dynamic multi-channel
environments. As they focus more on transmitting packets with the op-
timal channel, resources are not efficiently used when sufficient channels
are available in multi-radio multi-channel systems. Decisions are made
without time constraints, while in dynamic wireless environments, dead-
lines are always presented for both probing and data transmission pro-
cess. In this paper, we propose a transmission deadline probing paradigm,
and an optimal probing and transmission schedule with time constraints
is proposed, which is a pure threshold policy. Simulation results show
that, deadline probing paradigm effectively improves network resource
utilization as multiple channels presented with probing and transmission
deadlines.

Keywords: Cognitive Radio, Mobility, Scheduling, Wireless Network.

1 Introduction

As fundamental resources in self-organizing wireless network, channels qualities
and link durations are important factors in achieving efficient data transmis-
sions. On one hand, mobility causes dynamic topology changes between mobile
devices in network, which would eventually lead to packet loss and additional
routing messages. Routing protocol overhead and undelivered roaming packets
degrade network performance dramatically. On the other hand, spatial and tem-
poral varying characteristics of wireless channels would make the probing policy
difficult and degrade scheduling efficiency. Great efforts are needed in finding an
opportunistically optimal channel and time period to transmit packets [1] [2].

At the same time, many research works [10][5] have been done on selecting
routes in highly dynamic and self-organizing wireless network. However, these
works suffer from the following two aspects. One is that, although joint works
� This work is supported in part by the National Basic Research Program of

China (973 Program) under grant No. 2006CB303004. China 863 project Grant
No.2007AA01Z267. Jiangsu High-Tech Research Project of China under Grant
No.BG2007391.

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 38–49, 2008.
c© IFIP International Federation for Information Processing 2008

Deadline Probing: Towards Timely Cognitive Wireless Network 39

on routing, channel assignment and scheduling have been proposed, they are all
based on a relative static network topology. For those algorithms based on glob-
ally optimizations, any changes on network topology would cause large amount
of control messages overhead, which would degrade network performance as most
of the time are spent on computing the optimal value and the optimal schedule.
The other is that, unstable forwarder would cause intermittent links in network,
which lead to frequent re-routing in network scale.

Deadline probing mechanism would intelligently select links with relatively
long duration, and provide scheduling algorithm with time constraints. Schedul-
ing according to both transmitting jobs and channel transmitting capability will
make a more efficient usage on channels, and time constraints strengthen the
scheduling algorithm in time scale.

The main contributions of this paper are listed as follows: Firstly, we propose
an effective deadline probing algorithm in dealing with mobile wireless network
environment. Link duration is the time constraints between two nodes, and by
using the adaptive beacon messages, we explore the mobility factors of the mov-
ing node, and evaluate the link duration time, which is important to optimal
channel assignment.

Secondly, we propose a multi-channel transmission schedule algorithm which
considers traffic arrival rate and transmission deadline. Channels are assigned to
the appropriate transmissions which is ”suitable” to accomplish the transmitting
job.

The remainders of this paper are organized as follows. We review the seminar
works related in Section 2. Section 3 we formulate our problems. In section 4, we
propose a deadline probing algorithm. Section 5 transmission schedule is modeled
as a sequential job assignment algorithm with deadline constraints. Numerical
results and simulation results are presented in section 6. Section 7 concludes the
paper.

2 Related Work

Many seminar works have been done in order to opportunistically utilize the
multiple available channels [1][2][4] with relative good quality. In [4], Ji et al
propose a scheme named Medium Access Diversity (MAD) to probe channel
with time and space varying quality at the MAC layer. By effectively using
the multi-channel diversity, the user can select the receiver with best channel
condition. Channel probing with opportunistic transmission has been widely
studied recently. Similar problems have been studied in [1][2][4].

In all those applications, optimal channel probing can be achieved in order
to set a tradeoff between obtaining useful channel information and consuming
valuable probing times. It is usually assumed in these applications that, more
channels are ready for transmission, and the only thing probing policy needs
to consider is to select the best one among them, with a joint considerations
on probing cost. In multi-channel systems, independent optimization on one
channel transmission is not sufficient. In the perspective view of overall network

40 P. Yang, G. Chen, and Q. Wu

throughput, if wireless channels are enough, selecting one channel for transmis-
sion would reduce overall channel utilization.

Seminar work in [1] presents a pure threshold based algorithm on optimal
stopping strategy of channel probing. It is a tradeoff between channel quality
reward and probing cost. [2] propose a distributed scheme, which models the
probing procedure as a contention and threshold based process. Seminar work
in [1] assumes that channel state is independent of the state of other channels
during transmission. It is true if we take channel state as the only metric for
opportunistic transmission. However, in real network deployment, if the channels
are not enough, the links in network would congest for limited number of chan-
nels. Selecting one channel would face challenges, one is that the larger reward
channels would possibly be preferred by all nodes, and the correlations between
channels[1] would somehow make the contention even worse. Another challenge
is that, as the time progresses, more channels are probed, and the rest of the
channels are unused by other transmissions are becoming less, which would the
contention on channel selection.

These works also assume that channel sates are rather stable in a relative long
period, but it is not true since channel quality is a parameter varying with time
[5][6].

3 Problem Formation

3.1 Deadline Probing Model

The movement model of each node in network is random way point (RWP),
where each node in network randomly selects a position as its destination in a
convex region, and selects a speed randomly with a uniformly distributed region
[vmin, vmax], and the node moves toward its destination at its chosen speed di-
rectly. Transmission power can be adaptively adjusted in the transmission power
set Π = {P1, P2, ..., Pm}. There are m levels of transmission range respectively,
which form the range set Γ = {R1, R2, ..., Rm}. At the physical layer, we sim-
plified our model to free-space model and a SINR based receiving, as defined in
[11]; while at the MAC layer, we use the IEEE 802.11 model. As mentioned in
the following sections, our proposed scheduling and mobility awareness mecha-
nism are independent to MAC layer protocols, and only need a power adjustable
transmission scheme.

In mobile wireless network, duration time between nodes in dynamic topol-
ogy is hard to achieve. The first problem is that in highly dynamic network,
transit links are always existing in network entirely. These links would lead net-
work communication into fluctuation state, and no effective mobility mining is
available as links in network are unstable. The second reason is that, nodes are
moving in different velocity, with different speed and direction. As RSSI estima-
tion methods have been applied [10], it will suffer from weak and unstable radio
signals.

Deadline Probing: Towards Timely Cognitive Wireless Network 41

In order to solve these problems, we need a mobility-aware mechanism in
evaluating the link stability. And we assume that, no localization and speed
measurement instrument is available to nodes in network.

3.2 Channel Quality Probing and Scheduling

We consider a wireless system consisting of n channels. There are N nodes
in graph G = 〈V , E〉, with M edges such that e(i, j) = 〈vi, vj〉 ∈ E . With each
channel j ∈ Ω, the channel quality would be a random variable Xj . It is assumed
that, each channel must be probed before being used for transmission after a
period of that in order to avoid the channel quality variation[6][5]. We also
assume that, channel quality values are independently and identically distributed
if homogeneous network is given. While in a heterogeneous network, distribution
of different channels varies.

As we use multiple channels to transmit packets dynamically and concurrently,
the top k among all channels having been probed are selected in terms of their
channel quality value Xj , which could be modeled as the following equations:

MaxE[JN (uN
1)] = E

∑
1≤k≤N

ukXk (1)

with uN
1 = (u1, u2, ..., uN) satisfying the constraints. uj ∈ Uj = {0, 1}, j =

1, 2, ..., N,
∑

1≤k≤N uk = n. JN (∗) denotes the reward value, in this paper, it
denotes the probed channel bandwidth. E[∗] denotes the expectation of reward
value.It has been proved in [7] that, at each step j, with N − j + 1 channels
still available and aj already selected for transmission. And the optimal result
is up to a threshold value s̃(j, aj) such that the channel j with quality value
Xj is selected if larger than s̃(j, aj) and is rejected otherwise. Although such
threshold probing criteria is optimal for multi-channel probing problem, it does
not consider limitations on channel probing duration and number of admissible
channels.

As multiple channels can be probed, another question naturally arises that, as
the packets for transmission arrive sequentially, locally assign packets to differ-
ent channels would be important, as packets should be successfully transmitted
before the probing deadline reaches, and not all transmission need to be trans-
mitted on optimal channels. And the local channel assignment algorithm can be
described as:

Problem. How to assign sequentially arriving packets to multiple channels with
different bandwidth in order to maximize number of successful transmissions,
where each packet transmission has a transmission deadline?

4 Deadline Probing Algorithm

4.1 Threshold Based Filtering

As shown in Fig. 1, node i and node j are located on position in planar labeled
O and P respectively. According to deadline probing algorithm, probing range

42 P. Yang, G. Chen, and Q. Wu

Fig. 1. Threshold based neighbor selection

is
∥∥∥−−→
OP

∥∥∥ = R , with maximum transmitting power. And the one-phase tolerant

transmission range is
∥∥∥−−→
OQ

∥∥∥ = (1−∆)R . And we denote ∆ as ”tolerance factor”.

Node j is moving along direction at −−→
BP . We assume that, ∠BPX = φ. Since∥∥∥−−→

BN
∥∥∥ = ‖BP‖ − ‖PN‖ = 2 ‖PM‖ − (‖PM‖ − ‖MN‖)

= ‖PM‖ + ‖MN‖
and

∥∥∥−−→
PM

∥∥∥ = R · sin θ,
∥∥∥−−→
MN

∥∥∥ =
√

(1 − ∆)2 R2 − (R cos θ)2.
And it can be concluded that,

∥∥∥−−→
BN

∥∥∥ = R. sin θ +
√

(1 − ∆)2 R2 − (R cos θ)2 (2)

Available link duration is denoted as U(θ, v, ∆). Threshold based stability
means that link duration

∥∥∥−−→
BN

∥∥∥ ≥ Uthre and we can get the θmin and θmax, and
accordingly the tolerant factor ∆. According to series of equations listed above,
we can get the value that, θmin = arcsin Uthre

R and θmax = π − arcsin Uthre

R .
And the reduction factor

∆ = 1 −
√

1 −
(
Uthre/R

)2

(3)

There are two factors that are not available: direction and velocity, which
affect the link stability most in random way point model. In the following sub-
section, we will make an investigation on direction and velocity awareness on
random way point mobility model.

Deadline Probing: Towards Timely Cognitive Wireless Network 43

Fig. 2. Direction and velocity awareness mechanism

4.2 Relative Direction and Velocity Awareness

Threshold based filtering can effectively filter out the transitory links with du-
ration below , but the velocity is not available, and the direction is not available
also. In this subsection, we assume the centering node is static, and the relative
direction and velocity can be achieved according to the following equations. As
shown in Fig. 2, we can have that

‖PA‖ = v · t1 = R · sin θ −
√

(1 − ∆1)
2 R2 − (R cos θ)2 (4)

‖PB‖ = v · t2 = R · sin θ −
√

(1 − ∆2)
2
R2 − (R cos θ)2 (5)

‖PA‖
‖PB‖ = t1

t2
and we can get an equation that:

t1 ·
[
sin θ −

√
(1 − ∆1)

2 − cos2 θ

]
= t2 ·

[
sin θ −

√
(1 − ∆2)

2 − cos2 θ

]
(6)

Obviously, if ∆1 = ∆2, then t1 = t2. If we intentionally choose ∆1 �= ∆2, we
can calculate parameter θ. Let left f(θ) denote left part of equation 6, and let
g(θ) denote right part of equation 6.

f(θ) = sin θ −
√

(1 − ∆1)
2 − cos2 θ and g(θ) = sin θ −

√
(1 − ∆2)

2 − cos2 θ

f(π
2)

g(π
2) = 1−

√
(1−∆1)2

1−
√

(1−∆2)2
= ∆1

∆2

44 P. Yang, G. Chen, and Q. Wu

As θ = pi
2 , we have

f(π
2)

g(π
2)

=
1 −

√
(1 − ∆1)

2

1 −
√

(1 − ∆2)
2

=
∆1

∆2
(7)

As θ = arccos (1 − ∆2)
f(arccos(1−∆2))
g(arccos(1−∆2)) =

√
1−(1−∆2)2−

√
(1−∆1)2−(1−∆2)2√

1−(1−∆2)2
And we have d

[
f(x)
g(x)

]/
dx < 0,

thus the function is monotonic.
As figure Fig.2 shows, two phase probing improves the performance of dead-

line probing algorithm, where the mobile direction and speed if we set different
tolerant factors in two phase probing process. According to our deadline prob-
ing paradigm, both direction and speed of the moving node can be evaluated
through adaptive power adjustment and probing mechanism.

5 Channel Assignment with Job Complete Deadline

5.1 Model Description

In our channel assignmentmodel, arriving packets should be assigned immediately
or rejected. Either there is a single deadline that is exponentially distributed with
rate α, or there are n independent deadlines exponentially distributed. Packets
being rejected for transmission should be buffered and re-scheduled so as to to
be transmitted on next probing period. In this paper, we aim at maximizing the
probability that at least k transmitting jobs out of n are correctly completed be-
fore the deadline. On each channel j of node vi, there is a competency value pj ,
which is defined as follows.

Definition 1: Competency value pj for channel j is the probability that a metric
on channel quality, it can be the successful transmission rate or a normalized
bandwidth, where 0 ≤ pj ≤ 1 probed according to threshold based strategy.

Each channel j ∈ Ω would have competency value pj , and transmit data on the
channel j with quality Xj . The is channel j can be correctly used link i with re-
wards piXj . The channel quality can be achieved through probing, and appealing
to renewal theory, the channel is available for transmission can be modeled as a
queuing system, where the arrival rate can be applied in characterizing channel
availability for transmission.

According to sequential assignment problem studied in [8], we have the fol-
lowing theorem in achieving maximized number of success transmissions. There
are the following characteristics of our problem:

1: The channel resource is limited; 2: Request arrival rate for the resource is a
stochastic process; 3: The rewards associated with the channel resource is known
before transmission; 4: A deadline exists, where unfinished transmissions would
be rejected from transmission; 5: Reject or accept the transmission should be de-
cided on-line; 6: The objective is to maximize the expected reward accumulated
by the deadline.

Deadline Probing: Towards Timely Cognitive Wireless Network 45

Let us consider the link competency values so that p1 ≥ p2 ≥ p3, ..., pn ≥ 0.
Let X be a random value on success probability of packet transmission. Obvi-
ously, 0 ≤ X ≤ 1, and it is dominated by packet arrival time and packet trans-
mission time. The problem is how to assign m different packet transmissions to
n channels, which would achieve a maximized number of success transmissions.

The optimal assignment policy can be modeled as:

Max uijpixj

subject to pi ∈ {0, 1} xj ∈ {0, 1} uij ∈ {0, 1}

i ∈ {1, ...n} j ∈ {1, ..., m}

n∑
i=1

uij ≤ 1
m∑

j=1

uij ≤ 1

If packet numbered i is assigned to channel j, uij would accordingly be set to 1,
else it would be 0.

5.2 General Results

If there are no limits on number of packets waiting for transmissions, and the
deadlines for each packet are independent, we will get the following theorem [8].

Theorem 1. Given an optimal assignment policy, there are thresholds values
on transmitting job difficulty, denoted as 1 = v0 > v1 > v2, ..., vn > vn+1 = 0,
such that to assign transmission job value x to channel i if vi < x ≤ vi−1.

THEOREM 1 means that, channel assignment policy can be reduced to pure
threshold policy, where channel assignment is done according to the rank of the
”job difficulty”, and it shows to us that, the optimal assignment policy is a pure
threshold based policy.

Lemma 1. Let π denotes assignment policy and the optimal threshold corre-
sponding to policy π can be computed according to the following iterative equa-
tion.

vi =
λP [X > vi]

λP [X > vi] + iα
E[X |X > vi]. (8)

Corollary 1: If the transmission deadline parameter on channel with best trans-
mission quality is i · α, and have the same deadline threshold as the ith arrival
packet, that is the deadline parameter of the first arrival packet is i · α, it will
have the same threshold as the ith channel has the deadline parameter of α,
because v1(i · α) = vi(α).

46 P. Yang, G. Chen, and Q. Wu

5.3 Reward on Transmitting Packets

In this paper, we denote the random value x, as the transmitting reward xi =
P [Fi = Ti + Ai < Di], where Ti is the transmission duration of packet labeled
with i, and Ti = li

b . Ai is the arrival time of the packet, and the ending time
of a packet can be denoted as Fi = Ti + Di. And Di is the delay constraint.
A question naturally arises, that is, how to set the bandwidth value b? It is
shown in [11][6] that, channel bandwidth is correlated with channel quality, and
Ti = li

bj
. One simple method is that, each reward value x is evaluated equally

with best channel quality sup{pj∈P}{pj}. Under this policy, packets with shorter
length would be preferred over longer ones, and more likely to be transferred on
channels with higher quality. Because according to this criteria, shorter packets
would have larger x, and shorter packets are more likely to be transmitted on
high quality channels.

Considering network throughput, each packet should be transmitted on its
suitable transmission channel. That is, if the packet has larger length, it should
be transmitted on high quality channel.

And according to this lemma, we can easily get the following results. If the
packet labeled i is accepted for transmission, and let li denote the packet length,
t(i)j = li

bj
denote the transmission time value of packet i. x(i)j is monotonic with

the order of channel j. As 1 = v0 > v1 > v2, ..., vn > vn+1 = 0 , with increasing
of j, x(i)j decreases. There are three possible results as we select channel j to
transmit packet i. They are j∗ > j, j∗ = j and j∗ < j respectively.

Lemma 2. If a transmission can be accepted for transmission, suitable channel
i∗ exists, and the value is x(i∗).

Proof. There are three cases as we arbitrarily select one channel for transmission.
The first case is x < vi; The second case x > vi−1; And the third case is vi <
x < vi−1. x(i) is non-increasing as i increases. In the third case, it proves that,
channel i = i∗. In the first case, we should decrease i, whereas, the reward value
x would increase. Since the transmission can be accepted, there is 0 ≥ i∗ < i,
and vi∗ < x < vi∗−1. In the second case, we should increase i, where the reward
value is decreased accordingly.

Since threshold values are monotonic, our suitable channel finding algorithm
(SCF) works as follows:

Step 1 : Compute x according to P [Fi = Ti + Ai < Di]
when channel i is used for transmission

Step 2 : if x < vi, i = i − 1, go to step 1;
if x > vi−1 then i = i + 1, go to step 1;
if vi < x < vi−1, end the algorithm.

At first, the transmission job Ti randomly select a channel j and evaluate the
transmission difficulty x, if vj < x(i) ≤ vj−1, the transmission channel would
be j. Else if x(i) ≤ vj , we should select channel j − 1, if . Else if x(i) > vj , we
should select channel j + 1.

Deadline Probing: Towards Timely Cognitive Wireless Network 47

Fig. 3. Different transmission schedule comparisons

5.4 Sub-optimal Criteria

Iteratively computing the threshold value would be difficult as distribution of
job difficulty is complex. At the same time, we are also interested on achieving
at least k successful transmissions with maximal probability.

In this subsection, we first considering a special case where there only two
channels available, and the object is to maximize probability that at least one
packet is successfully transmitted over the two channels. Assume that there are
two channels and p1 ≥ p2, and the deadline is exponentially distributed with
rate α. The theorem has been proved in [8] as follows:

Theorem 2. The optimal policy is to assign a channel with value x to link-set
1 if x > v1, to assign it to link-set 2, if v1 ≥ x > t, and to reject it otherwise,
where

v1 =
λq1E[X1]
α + λq1

(9)

t =
λq1v1(1 − p1E[X1])

(λq1 + λq2 + α)(1 − p1v1)
+

λq2E[X2]
λq1 + λq2 + α

(10)

Also, V (p1, p2) = p1v1 + (1 − p1v1)p2t

Comparing with the policy that try to maximized number of successful trans-
missions, the first threshold v1 in both cases is the same, since there is only one
channel to be assigned, and it is independent to the second channel. The second
threshold t > v2, as the object that we set threshold value t is to maximize the
probability of at least one transmission is successful.

Let Vk,n(p|x) be the value of P{N ≥ k} under policy π when there are n links
with competency value array p, and the channel with reward x has just arrived.

Vk,n(p) = pnvnVk−1,n−1(pn) + (1 − pnvn)Vk,n−1(pn) for all n > 0, 0 < k ≤ n.
V0,n(p) = 1 for all n,
Vk,n(p) = 0 for all k > n.

48 P. Yang, G. Chen, and Q. Wu

We find that, the k out of n optimal criteria and maximum number criteria
are correlated with channel states and the distribution of transmission jobs. We
will make a further discussion in our simulation works.

6 Simulation Results and Numerical Analysis

We build the simulator and it is written in C++ language. In this simulation, we
build a 10 nodes network, where channel reward value are uniformly distributed
between (0.7, 0.9), deadline parameter α is uniformly distributed between (0, 4).
Packet length is triangular distributed with average packet length E[L] = 5.
Appealing to free-space radio propagation model and SINR based receiving [11],
we set our simulation environment, where the transmission range is 250m.

Fig. 4. Comparisons on rate adaptive mechanism with success rate

Fig. 5. Comparisons on rate adaptive mechanism with normalized throughput

Deadline Probing: Towards Timely Cognitive Wireless Network 49

In Fig3, we make a comparison on success probability between random as-
signment policy and our threshold based policy.

In Fig4, we make an evaluation on rate adaptive algorithm with neighbor
coordination, which is shown in section4.

Simulation show that although rate adaptive algorithm does not improve suc-
cess rate obviously, it really improves network throughput due to its considera-
tion on packet length, which is shown in Fig5.

7 Conclusions

In this paper, we model optimal probing problem as a knapsack problem with
deadlines, and channels probed are sequentially accepted or rejected according to
threshold value. Transmission schedule policy is built according to pure thresh-
old criteria, where transmission jobs are assigned to different channels, leading
to a maximized number of successful transmissions as deadlines are considered
as well. Future work will include a more accurate model on channel reward val-
ues and transmission priority. Quantum of different channels should be fully
considered, which will affect channel utilization in entire network scale.

References

1. Chang, N.B., Liu, M.: Optimal channel probing and transmission scheduling for
opportunistic spectrum access. In: ACM Mobicom, September 2007, pp. 795–825
(2007)

2. Zheng, D., Ge, W., Zhang, J.: Distributed opportunistic scheduling for ad-hoc
communications: an optimal stopping approach. In: ACM Mobihoc, pp. 795–825
(2007)

3. Guha, S., Munagala, K., Sarkar, S.: Jointly optimal transmission and probing
strategies for multichannel wireless systems. In: 40th Annual Conference on In-
formation Sciences and Systems, pp. 955–960 (2007)

4. Ji, Z., Yang, Y., Zhou, J., Takai, M., Bagrodia, R.: Exploiting medium access
diversity in rate adaptive wireless lans. In: Proc. of IEEE Asilomar Conference on
Signals, Systems, and Computers (September 2004)

5. Wang, H., Mandayam: Opportunistic file transfer over a fading channel under
energy and delay constraints. IEEE Transactions on Communications, 632–644
(2005)

6. Wu, D., Negi, R.: A Wireless Channel Model For Support of Quality of Service.
IEEE Transactions on Wireless Communications, 630–643 (2003)

7. Derman, C., Lieberman, G., Ross, S.: A Sequential Stochastic Assignment Algo-
rithm. Management Science, 349–355 (1972)

8. Righter, R.: Stochastically Maximizing the Number of Successes in a Sequential
Assignment Problem. Journal of Applied Probability, 351–364 (1990)

9. Gunter, Stefan, G., et al.: Queueing Networks and Markov Chains. Publishing
House of Electronics Industry (1998)

10. Lenders, V., Baumann, R.: Link-diversity Routing: A Robust Routing Paradigm
for Mobile Ad Hoc Networks. Technical Report (2006)

11. Rappaport, T.S.: Wireless Communication: Principles and Practice. Prentice Hall,
Englewood Cliffs (1995)

SRDFA: A Kind of Session Reconstruction DFA

Jinjing Huang, Lei Zhao�, and Jiwen Yang

School of Computer Science and Technology, Soochow University, China 215006
weijintu@163.com, zhaol@suda.edu.cn

Abstract. Session reconstruction is a crucial step in web usage mining.
This paper proposes a kind of session reconstruction DFA called SRDFA,
which can do session reconstruction for these webpages with or without
frame. Moreover, SRDFA can be used to do session reconstruction on
those websites which open URLs in new windows. This paper also takes
an example to show that sessions reconstructed by SRDFA are more
close to users’ actual browsing path.

Keywords: web usage mining, session reconstruction, DFA.

1 Introduction

With the rapid development of Internet, more and more people pay attention to
web usage mining [1,11], which can discover frequent access patterns based on
user’s access log. Web usage mining not only can provide personalized service to
users, but also be beneficial to the designers to reconstruct the website.

In order to discover the frequent access patterns, the first thing we should do
is to preprocess access log to obtain user’s sessions which are used for mining as-
sociation rules [2]. The precision of sessions will affect the acquisition of frequent
itemsets [8,12] directly, so how to get the accurate sessions from users’ log is the
chief problem. Furthermore, the structure of website becomes more and more
complex: on the one hand, the technology of dynamic website design is popular
and the designers would like to make web applications based on B/S frame. At
the same time, a large number of webpages with frame appear in web applica-
tions. On the other hand, in some websites whose URLs can be opened in new
windows so that users can browse website in asynchronous parallel mode. As a
result, the traditional methods of session reconstructions are no longer feasible
to this new situation. Based on the theory of DFA, this paper proposes one kind
of session reconstruction DFA called SRDFA, which can respectively be suitable
for webpages with frame or not; in addition, it can be seen that SRDFA is also
available to do session reconstruction for these websites which open URLs in
new windows.

� Corresponding author.

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 50–60, 2008.
c© IFIP International Federation for Information Processing 2008

SRDFA: A Kind of Session Reconstruction DFA 51

2 Related Work

The object of web usage mining is user’s access log with the format of CLF or
ECLF [3]. In the stage of preprocessing, there are mainly two kinds of
methods for session reconstruction: time-oriented heuristics and navigation-
oriented heuristics. Paper [4,5,9] introduce the two heuristics.

In time-oriented heuristics, session data is reconstructed by analyzing the ses-
sion duration time or the time between consecutive web page requests (page stay
time) [4]. Session duration time represents the total time of one session is limited
with a threshold of δ (usually δ=30mins) and page stay time means the time
spent on any page is limited with a threshold of δ (usually δ=10mins)[4].

Supposed that there are a series of page requests p1, p2, . . . , pk, the access
time of which are t1, t2, . . . , tk respectively. According to the first time-oriented
heuristics, if tk − t1 ≤ 30mins, these pages can constitute one session. How-
ever, based on the second time-oriented heuristics, if pages p1, p2, . . . , pk form
a session, then time spent on each page is less than 10 minutes (ti+1 − ti ≤
10mins).

In navigation-oriented heuristics [4,9], pages of one session can access each
other through direct or indirect hyperlink. If p1, p2, . . . , pk have already been
constituted a session, pk+1 can be joined into this session if there exist a hyperlink
from pi to pk+1(i ∈ [1, k]). If many pages contain such hyperlink, pi is the nearest
one to pk.

After session reconstruction, sessions can not be used for mining association
rules directly, for the reason that the log data sometimes isn’t intact. In other
words, such pages generated by clicking ”back” button in the previous page
are not recorded in service log, because they have already been stored in the
local cache. For instance, page p1 has hyperlinks toward page p2 and p3 , user
A first clicks this hyperlink to reach page p2 , then he comes back to p1 by
clicking ”back” button, and then go to page p3 from p1. Obviously, the real
access path of user A is p1 → p2 → p1 → p3 , however, the access path in log
file is p1 → p2 → p3. Some papers such as [4] and [10] study this problem and
paper [10] proposes the method of path supplement.

Reference [6] and [7] have already done some research on session reconstruction
and path supplement. In the two papers, DFA theory is applied to do session
reconstruction, however, this DFA isn’t suitable for webpage with frame. Thus
this paper proposes a kind of session reconstruction DFA called SRDFA, which
is different from that one in reference [6]. SRDFA is not only suitable for these
webpages with frame, but also is applicable to these websites which open URLs
in new windows.

3 SRDFA

Considering the flexibility of web design, if we only use time-oriental or
navigation-oriental heuristics to reconstruct sessions, maybe a real session is
separated into several ones. Moreover, today many websites open some URLs in

52 J. Huang, L. Zhao, and J. Yang

new windows, which results in that traditional algorithm of path supplement can
not reveal the actual access path. Based on the fact this paper proposes a kind
of DFA to do session reconstruction called SRDFA, which can automatically
accomplish session reconstruction for a section of users’ access log.

3.1 Webpages without Frame

For the webpages without frame, we can use the DFA to reconstruct sessions as
figure 1 depicts. Paper [6] has introduced this DFA in details.

Fig. 1. The DFA used in webpages without frame

One DFA is composed of five elements defined as M = (S,
∑

, f, S0, Z). In
figure 1, S = {1, 2, . . . , 11},

∑
= {a, b, . . . , k}, S0 = 0, Z = 11, and the meaning

of each state and character has been explained in paper [6].

3.2 Webpages with Frame

Nowadays, due to the adoption of new technology, the contents of access log have
become more complex. For example, Webpage with frame is a kind of special
webpage, which divides the browser window into several regions as table 1 shows.
And each region is filled with different page.

The webpage shown in table 1 is made up of three regions, which in fact are
different pages. In this case, the contents of catalogue and banners framework
usually display statically while the main framework changes its contents after
users click different hyperlinks. Generally speaking, page B usually is welcome
page, so it can be cleaned from the log. In catalogue framework, many hyperlinks
about different subjects are provided for users.

SRDFA: A Kind of Session Reconstruction DFA 53

Table 1. The structure of webpage with frame

Banners framework(B)

Catalogue
framework(C)

Main framework(M)

Before session reconstruction we should extract some fields such as HostID,
Date, URL (the address of page request), Referrer (the refer page of the current
page), Agent from the cleaned log. However, for webpages with frame (such as
struts framework website based on MVC mode), URL should be understood in
a broad sense instead of just as address.

Take a website based on MVC mode as an example. User submits a request
to web application through a table or a URL. After receiving this request, the
controller begins to search for the corresponding action. If no such action, the
controller will send the response to JSP or static page (html/xml) directly; but
if such action exists, then the field of URL is filled with a string of characters
ended with .do, which can be viewed as a generalized URL. Table 2 shows the
log data of a dynamic framework website based on MVC mode.

Table 2. Data of a dynamic framework website based on MVC mode

HostId Date URL Referrer

A [19/Mar/2008:15:40:23 +0800] a.jsp -

A [19/Mar/2008:15:40:25 +0800] b.do a.jsp

A [19/Mar/2008:15:40:35 +0800] c.do b.do

A [19/Mar/2008:15:41:38 +0800] d.do a.jsp

A [19/Mar/2008:15:42:56 +0800] d.do d.do

A [19/Mar/2008:15:43:28 +0800] d.do d.do

A [19/Mar/2008:15:45:12 +0800] d.do d.do

In some dynamic web applications, there is a fact that after clicking the dif-
ferent hyperlinks in one page, the address of URL displaying in the page is same
although we get different contents. In order to find out which hyperlink user
clicked, we have to resort to the access log. In some website different actions are
generated from different hyperlinks, we just need to confirm the clicked action
which is recorded in the field of URL. For example, supposed that page A has 3
hyperlinks B, C, D, and they correspond to 3 actions b.do, c.do, d.do respectively.
If user clicks hyperlink B, then the field of URL will be recorded as b.do. There-
fore, we can easily identify which hyperlink was clicked. Let’s review the table 2,
we can find the user traversed on the same action that is d.do from record 5 to
8. The reasons for this case are as follows: firstly, several hyperlinks in one page

54 J. Huang, L. Zhao, and J. Yang

may share the same action; secondly, some URL in dynamic website contains
parameters which are removed in the step of log cleaning. For example, suppose
URL is ”d.do?BH=076001&BM=JZGGNJXXX” which includes two parameters
BH and BM . After the step of log cleaning, the URL converts into ”d.do”. Re-
gardless of which situation, d.do should be considered as an important action.
So the designer would pay more attention to page a.jsp which generates action
d.do, and it is better to provide a short cut for user to access a.jsp conveniently.

3.3 Path Supplement Based on Multi Window

First of all, the data structure of record in session is defined as table 3 shows.

Table 3. The data structure of record

IP user

date the access time of page request

url url of page request (generalized url)

refer the refer page of current page

new window whether opened from new window

Suppose page p1 has two hyperlinks towards page p2 and p3 respectively which
are opened in new windows. It means that page p1 is not close when page p2

or p3 are opened. Besides, there is a hyperlink toward page p5 in page p2.Then
suppose the session is p1, p2, p5, p3 before doing path supplement. According to
the traditional path supplement algorithm, p2 and p1 should be inserted after
p5 for the reason that p3.refer �= p5.url. Therefore, the new session is p1, p2, p5,
p2, p1, p3. However, because of the particularity of this website, while p5 is open,
p1 isn’t close. So user can click p3 in the page p1 directly after visiting p5, rather
than coming back to page p1 by clicking ”back” button in page p5. Obviously,
the real session is p1, p2, p5, p1, p3.

As describing in section 3.2, when the main framework changes its content,
the catalogue framework is not variable, so users can easily change their interests
to watch pages about different subjects by clicking hyperlinks in the catalogue
framework, rather than coming to the main page through clicking the ”back”
button.

The algorithm of path supplement based on multi window [7] as follows:
Suppose p and q are any two consecutive records in a session, and q.refer =

s.url �= p.url.
(1)If s.url isn’t in the current session, put the current session into database

and regard record q as the first record of a new session, then go to (6).
(2)Suppose the next record of s is t and judge the section of records from s to

p is consecutive or not. If it is, then go to (3); Otherwise to find the discontinuous
record r, if r = s, then insert q after r, go to (6); if r �= s, go to (4).

(3)From t to p, there is one record whose URL is opened in a new window or
not. If there isn’t such record, then go to (5). Otherwise, suppose this record is

SRDFA: A Kind of Session Reconstruction DFA 55

x and the record in front of x is y. If there are several records are opened in new
windows, x is the one closest to s. If y = s, insert s and q after p, go to (6); If
y �= s, insert the section of records from y to s after p, then insert q, go to (6).

(4) From record t to r, there is one record whose URL is opened in a new
window or not. If there isn’t such record, then go to (5). Otherwise, suppose
the record is x and the record in front of x is y. If there are several records are
opened in new windows, x is the one closest to s. If y = s, insert s and q after r,
go to (6); If y �= s, insert the section of records from y to s after r, then insert
q, go to (6).

(5)Do path supplement with the traditional method (”back” mode).
(6)Path supplement finishes.

3.4 Session Reconstruction DFA

Because of the flexibility of web applications, such DFA introduced in section
3.1 can not be used in the webpages with frame. Thus we design a new DFA
called SRDFA, which adds several states to the original DFA. On the first aspect,
SRDFA contains some states for webpages with frame. On the second aspect,
SRDFA does the path supplement based on two modes which are ”back” mode
and ”multi window” mode.

Figure 2 is SRDFA which can automatically finish session reconstruction for
a section of users’ access log.

Fig. 2. SRDFA

56 J. Huang, L. Zhao, and J. Yang

Suppose p and q are two consecutive records of log, the meaning of each state
in SRDFA as follows:

State 0: the beginning state, start to accept the first record of access log;
State 1: accept the next record;
State 2: judge the two consecutive records belong to the same user or not;
State 3: current session terminates;
State 4: judge the time interval of two consecutive is greater than10 minutes

or not;
State 5: judge whether q.refer = p.url or not;
State 6: the same as 3;
State 7: judge which method of path supplement should be used;
State 8: judge whether q.refer = q.url or not;
State 9: do path supplement by the ”back” mode;
State 10: do path supplement by ”multi window” mode;
State 11: the same as 3;
State 12: accept the next record until its URL isn’t equal to p.url, and ter-

minate the current session;
State 13: insert the current record into the current session;
State 14: the terminal state, session reconstruction finishes.
The meaning of each character as follows:
a: the first record p;
b: the next record q;
c: p.IP �= q.IP (the consecutive pages belong to different users);
d: there is no next record in the log;
e: p.IP = q.IP (the consecutive pages belong to the same user);
f: q.date − p.date ≤ 10mins (the time interval between p and q is less than 10

minutes);
g: q.date−p.date > 10mins (the time interval between p and q is greater than

10 minutes);
h:q.refer �= p.url (p is not the refer page of q);
i: q.refer = p.url (p is the refer page of q);
j: records from q.refer to p are consecutive and their URLs are not opened

in new windows;
k: records from q.refer to p aren’t consecutive or they are consecutive but

there exist one record whose URL is opened in a new window;
l: q.refer isn’t in current session;
m: q.url = q.refer;
n: q.url �= q.refer.

4 Experimental Results

Table 4 is a section of access log from a dynamic struts framework website based
on MVC mode. In table 4, URLs are replaced by letters and Record-Id represents
the sequence of these records.

SRDFA: A Kind of Session Reconstruction DFA 57

In this website, a.jsp plays the role of catalogue framework. URLs opened
from catalogue page are all opened in new windows according to the section 3.3.
Thus, b.jsp and f.jsp are view as opened in new windows from a.jsp in this log.

Fig. 3. The actual path of 192.168.151.79

Fig. 4. The actual path of 192.168.151.65

In table 4, there are two different users 192.168.151.79 and 192.168.151.65.
Figure 3 and figure 4 are the actual access paths of these two users respectively
and numbers above the arrow represent the sequence of browsing the website.

For this section of log, if we just use the first time-oriented heuristics which
has been described in section 2, we can obtain sessions like this :{a.jsp, b.jsp,
a.jsp, b.jsp, h.jsp, c.do, d.do, f.jsp, g.jsp, e.do, e.do, e.do} and{a.jsp, b.jsp, h.jsp,
f.jsp, g.jsp, e.do, e.do}. In addition, if we adopt the second time-oriented heuris-
tics, sessions {a.jsp, b.jsp}, {a.jsp, b.jsp, h.jsp, c.do, d.do, f.jsp, g.jsp, e.do, e.do,
e.do}, {a.jsp, b.jsp, h.jsp, f.jsp, g.jsp, e.do, e.do} can be obtained.

After that, path supplement should be done. Take {a.jsp, b.jsp, h.jsp, f.jsp,
g.jsp, e.do, e.do} as an example, if we use the traditional method just considering
”back” mode, then {a.jsp, b.jsp, h.jsp, b.jsp, a.jsp, f.jsp, g.jsp, e.do, e.do} can
be obtained.

Obviously, the results can not really reflect the actual access path, which
means previous methods aren’t suitable for this framework website. Thus, we

58 J. Huang, L. Zhao, and J. Yang

Table 4. Data of a dynamic framework website based on MVC mode

Record-Id HostId Data URL Referrer

1 192.168.151.79 [19/Mar/2008:17:01:23 +0800] a.jsp main.jsp

2 192.168.151.79 [19/Mar/2008:17:01:36 +0800] b.jsp a.jsp

3 192.168.151.79 [19/Mar/2008:17:12:56 +0800] a.jsp main.jsp

4 192.168.151.79 [19/Mar/2008:17:13:26 +0800] b.jsp a.jsp

5 192.168.151.79 [19/Mar/2008:17:15:18 +0800] h.jsp b.jsp

6 192.168.151.79 [19/Mar/2008:17:15:37 +0800] c.do b.jsp

7 192.168.151.79 [19/Mar/2008:17:16:18 +0800] d.do c.do

8 192.168.151.79 [19/Mar/2008:17:20:02 +0800] f.jsp a.jsp

9 192.168.151.79 [19/Mar/2008:17:20:16 +0800] g.jsp f.jsp

10 192.168.151.79 [19/Mar/2008:17:22:16 +0800] e.do g.jsp

11 192.168.151.79 [19/Mar/2008:17:22:38 +0800] e.do e.do

12 192.168.151.79 [19/Mar/2008:17:23:53 +0800] e.do e.do

13 192.168.151.65 [19/Mar/2008:18:15:12 +0800] a.jsp main.jsp

14 192.168.151.65 [19/Mar/2008:18:15:26 +0800] b.jsp a.jsp

15 192.168.151.65 [19/Mar/2008:18:16:03 +0800] h.jsp b.jsp

16 192.168.151.65 [19/Mar/2008:18:17:23 +0800] f.jsp a.jsp

17 192.168.151.65 [19/Mar/2008:18:17:42 +0800] g.jsp f.jsp

18 192.168.151.65 [19/Mar/2008:18:18:16 +0800] e.do g.jsp

19 192.168.151.65 [19/Mar/2008:18:18:23 +0800] e.do e.do

adopt SRDFA to do session reconstruction. Suppose p and q are any two con-
secutive records of the log and the simple process of session reconstruction by
SRDFA is as follows:

(1)Accept the first record denoted as p on the state 0, then come to state 1
to accept the next record denoted as q; On the state 2, it can be found that p
and q belong to the same user (192.168.151.79), thus come to state 4; The time
interval between p and q is less than 10mins, so come to state 5; After that,
come to state 8 because p.url = q.refer(a.jsp); On the state 8, we can judge
that q.refer(a.jsp) �= q.url(b.jsp), so come to state 13; Insert record q into the
current session on this state, then continue to accept the next record. At this
moment, p and q are the second and third record respectively.

(2)Accept the third record by the aforementioned method. On the state 4, we
can find the time interval of p and q is greater than 10mins, so come to state
6; On this state, the current session {a.jsp, b.jsp} is terminated and is put into
the database, then the next record is accepted. Reset p and q, thus p is the third
record while q is the fourth one.

(3)Accept b.jsp, h.jsp by the same method, the current session is {a.jsp, b.jsp,
h.jsp}, then continue to accept the next URL (c.do). Based on the theory of
section 3.2, c.do is viewed as a generalized URL. On the state 5, it can be found
that q.refer �= q.url(b.jsp �= h.jsp), so come to state 7; On the state, the
SRDFA jumps to state 9 and does path supplement by ”back” mode, so the
current session is {a.jsp, b.jsp, h.jsp, b.jsp, c.do}.

SRDFA: A Kind of Session Reconstruction DFA 59

(4)Then put the next record into current session based on the method de-
scribed above, the current session is {a.jsp, b.jsp, h.jsp, b.jsp, c.do, d.do}. Then
accept the next record whose URL is f.jsp, and come to state 7 from state
5 as q.refer �= q.url(a.jsp �= e.do); b.jsp is opened in new window, so do
path supplement by ”multi window” mode on state 10. The current session
is {a.jsp, b.jsp, h.jsp, b.jsp, c.do, d.do, a.jsp, f.jsp}.

(5)Continue to accept next two records g.jsp and e.do, and the current ses-
sion is {a.jsp, b.jsp, h.jsp, b.jsp, c.do, d.do, a.jsp, f.jsp, g.jsp, e.do}. Accept next
URL (e.do), then q.url = q.refer(e.do = e.do) is found on the state 8, so come
to state 12, and record e.do doesn’t need repeat join in the session. Continue to
accept next record until its URL is not e.do or is null. Then put current session
{a.jsp, b.jsp, h.jsp, b.jsp, c.do, d.do, a.jsp, f.jsp, g.jsp, e.do} into the database.

(6)The rest records accepted by the aforementioned method and the paper
dosen’t explain in details. The SRDFA accepts records until the next URL
is null, then comes to the terminal state (state 14). There are three sessions
in the database {a.jsp, b.jsp}, {a.jsp, b.jsp, h.jsp, b.jsp, c.do, d.do, a.jsp, f.jsp,
g.jsp, e.do} and {a.jsp, b.jsp, h.jsp, a.jsp, f.jsp, g.jsp, e.do}.

According to figure 3 and figure 4, it is obviously found that sessions recon-
structed by SRDFA more close to the actual paths of users, which provide more
accurate data for mining association rules. Besides, SRDFA can be used in web-
pages with or without frame and applied to the website which open URLs in
new windows, so SRDFA has more advantages than the traditional methods of
session reconstruction.

5 Conclusion

The user’s web log becomes more and more complex, which brings new chal-
lenge and opportunity to web usage mining. This paper proposes a kind of ses-
sion reconstruction DFA called SRDFA. On the one hand, it can be applied to
webpages with frame or not respectively; On the other hand, it is also suitable
for these websites which open URLs in new windows. The experiment results
show sessions reconstructed by SRDFA more close to users’ actual access paths.
The future work is that we can optimize the SRDFA with addition of states
for transaction reconstruction, which means we can obtain transactions used for
mining association rules directly by the DFA.

6 The References Section

References

1. Srivastava, J., Cooley, R., Desphande, M., Tan, P.: Web Usage Mining, Discovery
and Applications of usage patterns from web data. SIGKDD Explorations 1(2),
12–23 (2000)

2. Ye, Y., Chiang, C.-C.: A Parallel Apriori Algorithm for Frequent Itemsets Mining.
In: Proceedings of the Fourth international Conference on Software Engineering
Research, Management and Applications. IEEE, Los Alamitos (2006)

60 J. Huang, L. Zhao, and J. Yang

3. Luotnen A.: The Common Log File Format,
http://www.w3.org/Daermon/User/Config/Logging.html

4. Bayir, M.A., Toroslu, I.H., Cosar, A.: A New Approach for Reactive Web Usage
Data Processing. In: Proceedings of the 22nd International Conference on Data
Engineering Workshops. IEEE, Los Alamitos (2006)

5. Berendt, B., Mobasher, B., Spiliopoulou, M., Nakagawa, M.: A Framework for the
Evaluation of Session Reconstruction Heuristics in Web Usage Analysis. INFORMS
Journal of Computing, Special Issue on Mining Web-Based Data for E-Business
Applications 15(2) (2003)

6. Jinjing, H., Lei, Z., Jiwen, Y.: Web Sessions Reconstruction based on DFA. Com-
puter Engineering and Applications (accepted) (chinese)

7. Jinjing, H., Lei, Z., Jiwen, Y.: Path Supplement in Session Reconstruction based
on multi window. Computer Applications and Software (accepted)(chinese)

8. Ye, Y., Chiang, C.-C.: A Parallel Apriori Algorithm for Frequent Itemsets Mining.
In: Proceedings of the Fourth international Conference on Software Engineering
Research. IEEE, Los Alamitos (2006)

9. Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide
Web Browsing Patterns. Knowledge and Information Systems 1(1) (1999)

10. Liehu, L., Haipeng, Z., Yafeng, Z.: Data preprocessing Method Research for Web
Log Mining. Computer Technology and Development 17(7), 45–48 (2007) (chinese)

11. Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Information and pattern
discovery on the world wide web. In: Proceedings of the 9th IEEE Internatioal
Conference on Tools with Artificial Intelligence (ICTAI 1997), Newposrt Beach,
CA (1997)

12. El-Sayed, M., Ruiz, C., Rundensteiner, E.A.: FS-Miner: Efficient and Incremental
Mining of Frequent Sequence Patterns in Web logs. In: WIDM 2004, Washing-
ton,USA (2004)

http://www.w3.org/Daermon/User/Config/Logging.html

Measuring the Normality of Web Proxies’

Behavior Based on Locality Principles

Yi Xie and Shun-zheng Yu

Department of Electrical and Communication Engineering,
Sun Yat-Sen University, Guangzhou 510275, P.R. China

xieyicn@163.com, syu@sysu.edu.cn

Abstract. Web Proxy and cache play important roles in the modern
Internet. Although much work has been done on them, few studies were
focused on the fact that these trusted intermediaries may be utilized to
launch Web-based attacks and to shield the attackers’ malicious behav-
ior. This paper fills an void in this area by proposing a new server-side
detection scheme based on the behavior characteristics of proxy-to-server
Web traffic. Proxy’s access behavior is extracted from the temporal lo-
cality and the bytes of the requested objects. A stochastic process based
on Gaussian mixtures hidden semi-Markov model is applied to describe
the dynamic variability of the observed variables. The entropies of those
pending Web traffics launched by proxies fitting to the model are used
as the criterion for attack detection. Experiments based on the real Web
traffic and an emulated attack are implemented to valid the proposal.

1 Introduction

Since 1994, Web proxies and caches have been widely deployed to reduce network
traffic and provide better response time for Web accesses. The primary aim of
proxy is to allow users to access the Web within a firewall. This type proxy
runs on a firewall machine and waits for a request from inside the firewall, then,
forwards the request to the remote server outside the firewall, reads the response
and then sends it back to the client. Apart from letting clients access resources
on the Web, proxies have various uses including sharing of various resources,
caching, anonymization, transformation of requests/responses, transfer between
different protocol system, and filtering/modifying requests/responses. Although
many studies have been done on Web proxy, most of them were only focused
on performance improvement (e.g., hit ratio, prefetch algorithm, item update
model) instead of the security issues.

In this paper, we study the server-side security issues caused by Web prox-
ies and explore the early detection for a new type Web-based attack which is
launched by utilizing the vulnerabilities of Web proxy based on HTTP protocol.
Being different from other traditional Web-based attacks whose aim is only to
shut down the victim or steal customs’ privacy information or illegally use Web
applications, such attack usually prevents legitimate users from using the ser-
vice by consuming server’s available CPU slots and memory resources. In order

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 61–73, 2008.
c© IFIP International Federation for Information Processing 2008

62 Y. Xie and S.-z. Yu

to avoid the server-side detection and Web proxies’ bypassing, attackers may
keep the victim server alive and locate behind proxies during the attack period.
The malicious attack behavior are tunneled to the Web server by utilizing vari-
ous types of HTTP requests (e.g., dynamic Web pages or HTTP requests with
“No-Cache” headers).

The motivations of proposing a scheme for such attack exist in many aspects:
(i) This type attack utilizes the HTTP and the opening TCP port 80 to pass all
low-layer firewalls and anomaly detection systems, thus, most detection methods
based on IP header or TCP connection (e.g., those surveyed in [1]) become in-
valid. (ii) According to the “request-response” mechanism of HTTP, Web server
has to return response for each incoming request. This working method creates
the chance of attack. Furthermore, attackers may also use the normal but ex-
pensive computational complexity HTTP requests to consume the server-side
resources, thus, it is difficult for those designed for flooding attacks and SQL
injection attacks (e.g., [2] [3]) to discover the anomaly signals of such attack.
(iii) Attackers are often unseen to the Web server because of the anonymization
function of hierarchical proxy architecture. (iv) Measuring the system resource
consumption rate (e.g., CPU or memory utilization) maybe a good way to dis-
cover the abnormalities caused by such attack. However, this method is not con-
ducive to the early detection or realtime monitoring because when the monitor
finds the system resources are occupied abnormally, attack has been successfully
going on for a very long time. To the best of our knowledge, few work has been
done on this field. This paper proposes a novel server-side anomaly detection
scheme to meet this new challenge and fills an void in this area based on proxies’
access behavior. The remainder of this paper is organized as follows. In section
2, we introduce rational of our scheme. We valid the proposal by the experiments
in section 3 and conclude this work in section 4.

2 Rationale of the Proposed Scheme

Much previous work has approved that statistics is a good method for anomaly
detection. Thus, our scheme is also based on statistical methods. One differ-
ence between our method and other existing anomaly detection systems is that
we implement the anomaly detection by measuring the normality of proxies’
application-layer access behavior instead of the IP headers or TCP connections.
In order to achieve this aim, we introduce a new way based on temporal locality
to extract the access behavior of Web proxies. Then a stochastic process based
on Gaussian mixtures hidden semi-Markov Model is used to describe the vari-
ety of the normal access behavior and implement the anomaly detection for the
pending proxy-to-sever Web traffic.

2.1 Stack Distance Model for Temporal Locality

Temporal locality of reference is one of the cornerstones of computer science.
Primitively, it was born from efforts to make virtual memory systems work well.

Measuring the Normality of Web Proxies 63

After that, temporal locality has been widely applied in many fields, e.g., Mem-
ory behavior [4], CPU cache [5], program behavior [6], Characterizing reference
pattern of Web access [7] and Web proxy cache replacement strategy and per-
formance improvement [8].

Intuitively, temporal locality refers to the property/likehood that referencing
behavior in the recent past is a good predictor of the referencing behavior to be
seen in the near future, whereas resource popularity metric only represents the
frequency of the requests without indicating the spacing between the requests,
i.e., the correlation between a reference to a document and the time since it was
last accessed.

The temporal locality of Web traffic can be defined by the following probability
function:

F (t) def= Prob[document i is referenced at time

x + t | document i was last referenced at time x]
(1)

Stack distance model is often utilized to capture the temporal locality rela-
tionships in most previous work, e.g., [7]. We denote a reference stream Ri =
{r1, r2, · · · , ri}, where ri denotes the ith requested document’s name. Index
i indicates that i requests have already arrived at a server. We define the
least recently used (LRU) stack Li, which is an ordering of all documents of
a server by recency of usage. Thus, at index i, the LRU stack is given by
Li = {u1, u2, · · · , uN}, where u1, u2, · · · , uN are documents of the server and u1

is the most recently accessed document, u2 the next most recently referenced, etc.
In other words, u1 is just accessed at index i, i.e., ri = u1. Whenever a reference
is made to an document, the stack must be update. Considering that ri+1 = uj ,
then the stack becomes Li+1 = {uj, u1, u2, · · · , uN}. Suppose now that Li−1 =
{u1, u2, · · · , uN} and ri = uj, i.e., the request ri is at distance j in stack Li−1.
Let di denote the stack depth of the document referenced at index i. Then, a
new relation can be obtained by the following equation “if ri = uj then di = j”,
where j denotes the stack depth of the requested document at index i. An ex-
ample of this LRU stack model is shown in Figure 1. Based on the initial stack
(L0 = {C, E, A, D, B}), the final stack distance sequence correspondent to the

A

B

C

D

E

Request
index

Reference
sequence

LRU
Stack

3

A

B

C

D
E

A D C A B D E A B

Stack distance

0 87654321 9

4

A

B

C

D

E

3

A

B

C
D

E

3

A

B

C
D
E

5

A
B

C
D
E

4

A
B

C

D

E

5

A
B

C

D
E

4

A

B
C

D
E

4

A
B

C
D
E

Fig. 1. Least recently used stack model

64 Y. Xie and S.-z. Yu

input reference string (R9={A, D, C, A, B, D, E, A, B}) is {3, 4, 3, 3, 5, 4, 5, 4, 4}.
In other words, the reference symbol stream Ri = {r1, r2, · · · , ri} is transformed
to a numerical stream Di = {d1, d2, · · · , di} based on stack distance model.

2.2 Profiling the Access Behavior

Since we focus on the anomaly detection of proxy-to-server Web traffic, we need
to profile the normal proxy behavior. Much previous work on Web proxy [7] [8]
has approved stack of object references is a good model for characterizing the
behavior of proxies and caches. The main advantage of stack distance model
for describing the Web proxies’ access behavior is that a request string can be
converted into a distance string that preserves the pattern of activity, but does
not depend on document names. For these reasons, we apply the stack distance
model to extract the proxy behavior characteristics in this paper.

Considering downloading is another main factor affecting the server perfor-
mance, we also take into account the bytes of requested documents. One problem
of obtaining the bytes of requested documents is, if the requests are for dynamic
Web pages, front-end detection system may not know the exact values of bytes
before the server responds the requests. If we put the detection system on the
outgoing path, it will be not conducive to the realtime detection. Thus, we use
a compromise solution to resolve this issue here. We build a database to record
the bytes of previously visited documents or routines (e.g., JAVA scripts). When
a request arrives at the front-end detection system, the system looks up the
database and estimate the bytes of its corresponding response. If the requested
document or routine can not be found in the database, we will use the mean
bytes of the documents/routines recorded in database. In order to avoid confu-
sion between the estimated bytes value and the actual one, we call the response
bytes used in this paper as “prospective return bytes (PRBs)”. The PRBs of the
corresponding document or routine recorded in the database will be updated by
exponential forgetting based on the server’s response if the incoming request is
legitimate:

si(j) = (1 − ρ)si(j − 1) + ρsij , 1 ≥ ρ ≥ 0 (2)

where ρ is the decay rate, si(j) and sij is the new PRBs and the real response
bytes value of the ith object (document/routin) requested at the jth time.

Thus, assuming a HTTP reference stream Ri = {r1, r2, · · · , ri}, we have two
corresponding numerical streams: Di={d1, d2, · · · , di} and Si={s1, s2, · · · , si},
where si denote the PRBs of the document referenced at index i.

If we use M(t) to denote the set of HTTP requests which appear during the
tth second, and use N(t) to denote the size (i.e., the number of requests) of
M(t), then, the average stack distance value and average PRBs per second can
be respectively calculated by the following equations:

{d̄t, s̄t} =
1

N(t)

∑
∀i:ri∈M(t)

{di, si}, t = 1, 2, ... (3)

Measuring the Normality of Web Proxies 65

For brevity of notation, we use ot to denote a time series which is made up of
d̄t and s̄t, i.e., ot = (d̄t, s̄t), where t is the index of second. Previous work [7] [8]
indicated that Web temporal locality streams are statistically self-similar or
long-range dependence and that this property can be used to explain aspects
of the request string that are the result of spatial locality [7]. This means that
correlations between object references can occur at widely varying timescales.
Such characteristics can have a significant impact on profiling the proxy-to-
server traffic. Therefore, better understanding of the nature of the temporal
locality is useful to profile the access behavior of proxy-to-server Web traffic. In
order to achieve this aim, we use a stochastic process to describe the dynamic
variation of stack distance value instead of the traditional ways designed for
proxy performance improvement based on pure statistical method (e.g., mean
or variance).

Among existing stochastic models, hidden semi-Markov Models (HsMMs) [9]
is one of the useful tools to describe most practical stochastic signals without too
many assumptions. A major advantage of using the HsMM is its efficiency in esti-
mating the model parameters to account for an observed sequence. Furthermore,
it can capture various statistical properties of time series, including long-rang
and short-rang dependence, non-stationary and the non-Markovian [10]. Thus,
HsMMs have been widely applied in many areas such as mobility tracking in
wireless networks, activity recognition in smart environments, and inference for
structured video sequences.

In this paper, we assume the time series {o1, o2, · · · , oT } is controlled by an
underlying Markov Chain. Each underlying Markov state represents one type
joint probability distribution of average stack distance value and average PRBs
per second, or say a type of proxy’s access behavior pattern. Transition of the
hidden Markov states implies the change of proxy’s access behavior pattern
from one kind to another one. Residential duration of the Markov state can be
considered as persistence of the request profile.

Let x1, x2, · · · , xM be states of a semi-Markov chain, qt denote the state of
the semi-Markov chain at time t and λ = {πm, amn, bm(ot), pm(d)} be the para-
meters of a given HsMM, where πm ≡ Pr[q1 = xm|λ] is the initial state proba-
bility function, amn = Pr[qt = xn|qt−1 = xm, λ] the state transition probability
function, bm(ot) = Pr[output vector of the model is ot|qt = xm, λ] the output
probability function and pm(d) = Pr[duration of qt is d|qt = xm, λ] the state
duration probability function.

The rational and parameter estimation of discrete HsMM can be found in [9].
In this paper, we simplify the HsMM by applying the Gaussian mixtures into
the output probability function bm(ot), i.e.:

bm(ot) =
κ∑

k=1

cmkbmk(ot) =
κ∑

k=1

cmkN (ot, µmk, Σmk), (4)

where κ is known; cmk ≥ 0 for 1 ≤ m ≤ M , 1 ≤ k ≤ κ;
∑κ

k=1 cmk = 1 for 1 ≤
m ≤ M ; and N (o, µ, Σ) denotes the multi-dimensional normal density function

66 Y. Xie and S.-z. Yu

of mean vector µ and covariance matrix Σ. We also assume the transition of
hidden states obeys the Birth-death process, i.e., amn = 0 when |n − m| > 1.

We directly use the forward and backward variables and three joint probability
functions defined in [9] , i.e. :

αt(m, d) def= P [ot
1, qt = xm, τt = d|λ] (5)

βt(m, d) def= P [oT
t+1|qt = xm, τt = d, λ] (6)

ζt(m, n) def= P [oT
1 , qt−1 = xm, qt = xn|λ] (7)

ηt(m, d) def= P [oT
1 , qt−1 �= xm, qt = xm, τt = d|λ] (8)

γt(m) def= P [oT
1 , qt = xm|λ] (9)

where τt denotes the state duration of qt. Then, We define the probability that
the kth component of the mth mixture generated observation ot as

γt(m, k) def= Pr(qt = m, Ymt = k|O, λ) (10)

= γt(m)
cmkbmk(ot)

bm(ot)

where Ymt is a random variable indicating the mixture component at time t for
state m. When there are E observation sequences the eth being the length of Te,
the parameters of this parametric HsMM can be iteratively calculated by:

π̂m =
E∑

e=1

γe
1(m)/E (11)

âmn =
∑E

e=1

∑Te

t=1 ζe
t (m, n)∑E

e=1

∑Te

t=1

∑M
n=1 ζe

t (m, n)
(12)

ĉmk =
∑E

e=1

∑Te

t=1 γe
t (m, k)∑E

e=1

∑Te

t=1 γe
t (m)

(13)

µ̂mk =
∑E

e=1

∑Te

t=1 γe
t (m, k)oe

t∑E
e=1

∑Te

t=1 γe
t (m, k)

(14)

Σ̂mk =
∑E

e=1

∑Te

t=1 γe
t (m, k)(oe

t − µmk)(oe
t − µmk)T∑E

e=1

∑Te

t=1 γe
t (m, k)

(15)

p̂m(d) =
∑E

e=1

∑Te

t=1 ηe
t (m, d)∑E

e=1

∑Te

t=1

∑D
d=1 ηe

t (m, d)
(16)

Measuring the Normality of Web Proxies 67

Most previous work have approved Viterbi algorithm is a good method for
decoding. Thus, we modify the Viterbi algorithm designed for hidden Markov
Model [11] for our HsMM based on the following recursion for δt(m), the poste-
rior probability of the best state sequence ending in state m at time t:

δt(m) = max
d

δ∗t−d(m)pm(d)bm(ot−d+1, ..., ot) (17)

δ∗t (m) = max
m

δ∗t (m)amn (18)

2.3 Detection Scheme

We use an average logarithmic likelihood ε(t) (i.e., entropy) of observations (ot
1)

fitting to the given HsMM (λ) as the detection criterion at the tth second. The
ε(t) is defined as Equation (19):

ε(t) def=
1
t
log{P [ot

1|λ]} =
1
t
log{

∑
m,d

αt(m, d)} (19)

The whole anomaly detection scheme is outlined in Figure 2. The details are
shown as the following. When a proxy’s reference string reaches the ingress of
the victim Web server, the detection scheme begins to work. First, Information
Extraction (IE) module is performed on the incoming observed data for calculat-
ing the average stack distance and requested file size (i.e., Ot = o1, o2, · · · , ot).
If the data are used for training model, they will be sent to the Iteration Cal-
culation (IC) module which will output the parameters (λ) of the model to
the Forward Process (FP). Otherwise, the observed data may be directly sent
to the FP which will form the decision of pending reference string’s normality
based on its entropy. If the decision is positive, the switch between the Data
Pool (DP) and the Service Queue (SQ) will be kept on opening to prevent those
suspected HTTP requests from entering the SQ module and affecting the Web
server performance. In order to avoid the overflow of DP, we can start a timer
while a new reference stream enters the DP. When the value of timer is zero,
the corresponding reference stream will be deleted. Once, the decision of the
pending request stream is negative, switch will be put on for transmitting the
correspondent reference string to the SQ module where the proxy’s requests are

Information
Extraction

Iteration
Calculation

Forward
Process

Web Server

Reference string
r1,r2,…,ri

Training

Parameters
Detection

decision

Service Queue

Responses Switch

Data Pool
r1,r2,…,ri

,...2,1, tot ,...2,1, tot

r1 ,r2
,

… ,
ri

r1,r2,…,ri

Fig. 2. Detection scheme for proxy-to-server Web traffic

68 Y. Xie and S.-z. Yu

waiting for Web Server’s response according to the First in First out (FIFO)
policy or other Quality of Service (QoS) strategies.

3 Experiments and Numerical Results

In this section, we use a 72 hours real Web traffic which includes 258 proxies
to valid our detection scheme. The simulation is implemented in the NS2 sim-
ulator [12] by two application-layer modules (i.e., “Web cache application” and
“PackMime-HTTP: Web Traffic Generation”). There are three phases in our
simulation: the first 24 hours traffics are used for constructing a stable tempo-
ral locality stack for proxies; the second 24 hours traffics are used for model
training and the remaining are used for testing. During the attack period, we let
the emulated “bad” clients replay the normal users’ requests, most of which are
for dynamic contents(e.g., database searching) and large byte documents (e.g.,
audio and video). Once the “bad” requests are produced, they are sent to the
proxies. Thus, both the “bad” requests and the “good” requests of proxies are
sent to the victim Web server.

The time unit of the final observation ot is second. This time series is then
blocked into frames. Each frame spans 10 seconds or 10 observed vectors. Consec-
utive frames overlap by 5 seconds. On the other words, each frame is multiplied
by a Hamming Window with width of 10 seconds and applied every 5 seconds.

3.1 Statistical Analysis for Observed Data

In Figure 3 , we compare the joint distributions of stack distance and PRBs
between period of the normal Web traffic and the emulated attack period. We
can find that most points of both the normal and attack periods fall into the low-
value area. Furthermore, during the emulated attack period, the largest stack
distance value is much smaller than that of the normal period. This result shows
that it is not easy for us to distinguish the attack requests from the normal
requests sent by proxies only by the statistical properties.

We plot the distribution of logarithmic stack distance values and PRBs of
different testing data in Figure 4 and Figure 5, respectively. All these figures are
Gaussian-like distributions with similar means and variances. These results also
show, it is ineffective for the pure statistical methods to distinguish the abnormal
requests from the normal ones.

3.2 Detection Based on HsMM

A five-state HsMM is used in this experiment. The model parameters are ob-
tained based on the previous HsMM algorithm. In Figure 6 and Figure 7, we
use a 500 seconds Web traffic fragment of one of the sample proxies to show
the stochastic processes of stack distance values and PRBs based on HsMM.
Comparing both the hidden state processes of normal and emulated attack

Measuring the Normality of Web Proxies 69

(a) normal Web traffic (b) emulated attack Web traffic

Fig. 3. Joint distribution of stack distance and bytes in different periods

0 2 4 6 8 10
0

0.08

0.16

0.24

0.32

0.4

logarithmic stack distance values

pr
ob

ab
ili

ty
 (x

=k
)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 (x

>k
)

(a) normal Web traffic

0 2 4 6 8 10
0

0.08

0.16

0.24

0.32

0.4

logarithmic stack distance values

pr
ob

ab
ili

ty
 (x

=k
)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 (x

>k
)

(b) emulated attack Web traffic

Fig. 4. Marginal distribution of stack distance in different periods

0 3 6 9 12 15
0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty
 (x

=k
)

0 3 6 9 12 15
0

0.2

0.4

0.6

0.8

1

logarithmic prospective return bytes

pr
ob

ab
ili

ty
 (x

>k
)

(a) normal Web traffic

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty
 (x

=k
)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

logarithmic prospective return bytes

pr
ob

ab
ili

ty
 (x

>k
)

(b) emulated attack Web traffic

Fig. 5. Marginal distribution of prospective return bytes in different periods

70 Y. Xie and S.-z. Yu

0 100 200 300 400 500
0

40

80

120

160

200

240

qu
an

tiz
ed

 in
te

rv
al

 o
f

st
ac

k
di

st
an

ce
 v

al
ue

s

0 100 200 300 400 500
0

1

2

3

4

5

6

index of time(second)

in
de

x
of

 h
id

de
n

st
at

es

(a) stack distance sequence

0 100 200 300 400 500
0

80

160

240

320

400

480

qu
an

tiz
ed

 in
te

rv
al

s
of

 re
qu

es
ts

’ b
yt

es

0 100 200 300 400 500
0

1

2

3

4

5

6

index of time (second)

in
de

x
of

 h
id

de
n

st
at

es

(b) PRB sequence

Fig. 6. Profiling the normal proxies behavior by hidden states

0 100 200 300 400 500
0

30

60

90

120

150

180

qu
an

tiz
ed

 in
te

rv
al

 o
f

 s
ta

ck
 d

is
ta

nc
e

va
lu

es

0 100 200 300 400 500
0

1

2

3

4

5

6

index of time(second)

in
de

x
of

 h
id

de
n

st
at

es

(a) stack distance sequence

0 50 100 150 200 250 300 350 400 450 500
0

90

180

270

360

450

540

qu
an

tiz
ed

 in
te

rv
al

of

 re
qu

es
ts

’ b
yt

es
0 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

index of time(second)

in
de

x
of

 h
id

de
n

st
at

es

(b) PRB sequence

Fig. 7. Profiling the abnormal proxies behavior by hidden states

1 2 3 4 5
0

0.06

0.12

0.18

0.24

0.3

index of hidden states

pr
ob

ab
ili

ty
(x

=k
)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 (x

>k
)

(a) normal Web traffic

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
(x

=k
)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

index of hidden states

pr
ob

ab
ili

ty
(x

>k
)

(b) emulated attack Web traffic

Fig. 8. Distribution of hidden states in different periods

testing periods, we can find the obvious differences: dynamic range of state
transition of normal Web traffic is wider and more homogeneous than that
of the evaluated attack Web traffic. This shows the hidden semi-Markov
states can be used to extract the proxy behavior and to recognize the
abnormality.

Since the hidden semi-Markov state sequences are different between the nor-
mal proxy traffic and the abnormal one, the distribution of hidden state can be
used intuitively for the anomaly detection. In Figure 8, we show the histograms
of hidden states.

It is not credible to draw a conclusion only based on the intuitionists results.
In order to build an automatical and numerical detection system, we use the
entropy defined in Equation (19) as the measure criterion. We show the entropy

Measuring the Normality of Web Proxies 71

-16 -14 -12 -10 -8 -6
0

0.1

0.2

Entropy

P
ro

ba
bi

lit
y

(x
=k

)
-16 -14 -12 -10 -8 -6

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

(x
<k

)

g py

Fig. 9. Entropy of training data

-16 -14 -12 -10 -8 -6
0

0.1

0.2

0.3

0.4

Entropy

P
ro

ba
bi

lit
y

(x
=k

)

-14 -12 -10 -8 -6

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

(x
<k

)

Fig. 10. Entropy of normal testing data

Fig. 11. Entropy of emulated attack data Fig. 12. Detection performance

distribution and the corresponding cumulative distribution of the training data
in Figure 9, from which we find most entropies of normal proxy-to-server Web
traffic are belong to [-10,-7]. Since the entropy distribution of normal proxy-
to-server is concentrated, it can be used as a criterion to achieve the anomaly
detection for the proxy-to-server Web traffic.

Two data sets are used to test the model performance. The first one is used
to validate the False Positive Rate (FPR) of the model. It includes the normal
proxy-to-server Web traffics which occur after the training data and are pro-
duced by those proxies that never appear in the training process. The second
one including the emulated attacks is used to verify the scheme’s Detection Rate
(DR). Two attack forms are considered in this experiments, which include the
dynamic page attack and the downloading attack. We plot the entropy distrib-
utions and the corresponding cumulative distributions of these two data sets in
Figure 10 and Figure 11, respectively.

Comparing Figure 9 with Figure 10 and Figure 11, we see, although the sources
and the time are quite different between the training data and the normal test
data, most entropies of them fall into the same range . The result means the
statistical properties of our observations does not depend on or bind with the
name of requested documents which are varying with time. Thus, the model is
fairly stable for the normal proxy-to-server Web traffic. However, as shown in
Figure 11, the entropy distribution of the traffic mixed with emulated attack

72 Y. Xie and S.-z. Yu

requests are quite different from those of previous ones, which shows the model
is sensitive to the unusual request pattern. This characteristic is very useful
for detecting the potential abnormity of proxy-to-server Web traffic. In Figure
12, we plot the receive operating characteristic (ROC) curve which shows the
FPR = 0.1% and DR = 98% when the decision threshold of entropy takes the
value of −12.

4 Conclusion

An early detection scheme focusing on a Web-based attack which utilizes the
proxy-to-server Web traffic to shield the attack behavior, is proposed in this pa-
per. Based on the stack distance of temporal locality, Gaussian mixtures HsMM
is applied to profile the access behavior characteristics of proxy-to-server traf-
fic and carry out the anomaly detection. The numerical results of experiment
demonstrate that the proposed method is expected to be practical in monitoring
the attacks hidden in the proxy-to-server traffic.

Acknowledgment

This work was supported by the key Program of NSFC-Guangdong Joint Funds
(Grant No.U0735002) and the National High Technology Research and Devel-
opment Program of China (Grant No.2007AA01Z449). It was performed while
the author was with George Mason University as a visiting PHD student.

References

1. Patcha, A., Park, J.: An overview of anomaly detection techniques: Existing solu-
tions and latest technological trends. Computer Networks 51(12), 3448–3470 (2007)

2. Ranjan, S., Swaminathan, R., Uysal, M., Knightly, E.: DDoS-Resilient Scheduling
to Counter Application Layer Attacks under Imperfect Detection. In: Proceedings
of IEEE INFOCOM, Barcelona, Spain, April, pp. 1–13 (2006)

3. Zhang, L., White, G.: Anomaly detection for application level network attacks
using payload keywords. In: IEEE Symposium on Computational Intelligence in
Security and Defense Applications, 2007. CISDA 2007, April 1-5, 2007, pp. 178–185
(2007)

4. Smith, A.: Cache Memories. ACM Computing Surveys (CSUR) 14(3), 473–530
(1982)

5. Hill, M., Smith, A.: Evaluating Associativity in CPU Caches. IEEE Transactions
on Computers 38(12), 1612–1630 (1989)

6. Spirn, J.: Distance String Models for Program Behavior. Computer 9(11), 14–20
(1976)

7. Almeida, V., Bestavros, A., Crovella, M., de Oliveira, A.: Characterizing refer-
ence locality in the WWW. In: Fourth International Conference on Parallel and
Distributed Information Systems, 1996, pp. 92–103 (1996)

8. Mahanti, A., Eager, D., Williamson, C.: Temporal locality and its impact on Web
proxy cache performance. Performance Evaluation 42(2-3), 187–203 (2000)

Measuring the Normality of Web Proxies 73

9. Yu, S.Z., Kobayashi, H.: An efficient forward-backward algorithm for an explicit-
duration hidden Markov model. Signal Processing Letters 10(1), 11–14 (2003)

10. Yu, S.Z., Liu, Z., Squillante, M., Xia, C., Zhang, L.: A hidden semi-Markov model
for web workload self-similarity. In: 21st IEEE International on Performance, Com-
puting, and Communications Conference, 2002, pp. 65–72 (2002)

11. Rabiner, L.: A tutorial on hidden Markov models and selected applications inspeech
recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

12. NS2 (Ns2), http://www.isi.edu/nsnam/ns/

http://www.isi.edu/nsnam/ns/

Feedback Control-Based Database Connection
Management for Proportional Delay

Differentiation-Enabled Web Application Servers

Wenping Pan, Dejun Mu, Hangxing Wu, Xinjia Zhang, and Lei Yao

College of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi 710072,China
paninxian@gmail.com

Abstract. As an important differentiated service model, proportional delay dif-
ferentiation (PDD) aims to maintain the queuing delay ratio between different
classes of requests or packets according to pre-specified parameters. This paper
considers providing PDD service in web application servers through feedback
control-based database connection management. To achieve this goal, an approxi-
mate linear time-invariant model of the database connection pool (DBCP) is iden-
tified experimentally and used to design a proportional-integral (PI) controller.
Periodically the controller is invoked to calculate and adjust the probabilities for
different classes of dynamic requests to use database connections, according to
the error between the measured delay ratio and the reference value. Three kinds
of workloads, which follow deterministic, uniform and heavy-tailed distributions
respectively, are designed to evaluate the performance of the closed-loop system.
Experiment results indicate that, the controller is effective in handling varying
workloads, and PDD can be achieved in the DBCP even if the number of concur-
rent dynamic requests changes abruptly under different kinds of workloads.

1 Introduction

It has become an important issue for Internet servers to provide quality of service (QoS)
guarantees to different network applications and clients. Many researchers have high-
lighted the importance of QoS guarantees in web servers under heavy-load conditions,
and there has existed much work focusing on response delay guarantees in web servers
[8][12][3][10]. Response delay is a key performance metric for web applications. From
a client’s perspective, response delay of a request includes three parts, connection de-
lay, processing delay and communication delay. For a dynamic request, processing de-
lay is an important part of users’ perceived response time. Most dynamic requests use
database connections for data access. Under heavy-load conditions, dynamic requests
need to compete for limited number of database connections, which incurs the delay in
the DBCP. In order to implement PDD in the DBCP, we divide dynamic requests into
two different classes according to their priorities and design a controller to adjust the
probabilities for these classes to get idle database connections from the pool. In this
approach, requests with different priorities can be served with different delays.

The rest of the paper is organized as follows. Section 2 describes PDD in the DBCP.
Section 3 presents the system identification, the controller design, as well as the

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 74–85, 2008.
c© IFIP International Federation for Information Processing 2008

Feedback Control-Based Database Connection Management 75

system implementation and extension. Section 4 describes the experiments and gives
the experimental results. Section 5 reviews related work and section 6 concludes the
paper.

2 Proportional Delay Differentiation in Database Connection
Pools

2.1 Connection Management in DBCP

It is a resource intensive and time consuming operation to open a database connection. As
to a specified web application, if each http request opens and then closes a database con-
nection for data access, a significant amount of processing time will be spent on the con-
nection process, which obviously increases users’ perceived response time. To solve these
kinds of problems, DBCP has been widely adopted in web application servers. DBCP
promotes the performance of web applications by reusing active connections rather than
opening a new connection for each request. DBCP maintains a pool filled with active con-
nections [11]. Once a new connection request comes in, after checking if there are any
idle connections in the pool, DBCP returns one connection if true. If all connections in the
pool are busy and the maximum pool size has not been reached, DBCP will create several
new connections. When the pool reaches its maximum size, a newly incoming connec-
tion request will be queued up waiting for a connection available until the pre-specified
waiting time is out, no matter how urgent or important the request is.

2.2 PDD in DBCP

Although DBCP reduces the response time for dynamic requests and enhances the per-
formance of web application servers, it provides service only in a best-effort model
and doesn’t take the priorities of requests into account. For many business websites,
service differentiation becomes necessary because web applications are deployed for
online trading and e-commerce. There have existed many mechanisms [4] [17] [22]for
service differentiation in web server end-systems, but none of them focuses on the delay
differentiation in the DBCP for web application servers. In this paper, we achieve PDD
in a DBCP using classical feedback control theory.

PDD, which was first proposed in [23], has gained much attention in recent years [2]
[20] [21][13][12][18]. The basic principle of PDD is that requests or packets with high
priority will receive better performance compared with those with low priority. Suppose
that requests or packets in networks can be classified into n classes. Let d̄i be the
average queuing delay of class i and δi be the specified delay differentiation parameter
for class i. PDD aims to ensure that the delay ratio between class i and j equals the ratio
between δi and δj , as is in Eq.(1). The class with a higher priority usually has a smaller
delay differentiation parameter.

d̄i

d̄j
=

δi

δj
, where 1 ≤ i ≤ n, 1 ≤ j ≤ n. (1)

In this paper, dynamic requests in web application servers are classified into two
classes, class A with high priority and class B with low priority. When there is no idle

76 W. Pan et al.

database connection in the DBCP, each class of requests will queue up to compete for
the next database connection available, as is in Fig.2. According to PDD, the request
from class A will get service in a smaller queueing delay than those from class B, and
the average delay ratio between class A and class B will be kept as a constant value.

3 Design of a Feedback Controller

3.1 System Identification

As is shown in Fig. 2, let d̄A(k) and d̄B(k) denote the average queuing delays for class
A and B in the kth sampling period. Let PA(k) and PB(k) denote the probabilities for
class A and B to get idle database connections in the kth sampling period. Suppose that
the DBCP can be approximately modeled as a mth order linear time-invariant system,
which can be described as

Y (k) =
m∑

i=1

[aiY (k − i) + biX(k − i)] (2)

where

Y (k) =
d̄A(k)
d̄B(k)

X(k) =
PB(k)
PA(k)

PB(k) + PA(k) = 1.

We need to decide the order m and the parameter vector θ, i.e. (a1, · · ·, am, b1, · · ·, bm)T

of the model.
The test-bed is described in section 4. Experimental setup is as follows. The total

number of worker threads is configured to be 100, and the pool size is set to be 20. Two
client machines, one with high priority and the other with low priority, are started to
simulate 50 real clients to send dynamic requests. Requests are classified into class A
or B by the classifier according to their source IP, as is shown in Fig. 2. White noise
input has been widely used for system identification. In our experiment, we generate a
white noise input sequence according to

ε(k) = [ε(k − p) + ε(k − q)]mod 2 (3)

where p = 8, q = 5 and the sequence period is 255. At the kth sampling instant, X(k)
is set to be 1 if ε(k) = 1, or else 1.5. The experiment lasts for 40 minutes.

We calculate θ using the recursive least square (RLS) estimation algorithm [14].
According to RLS, θ can be calculated by Eq. (4).Suppose that θ0 = 0 and P0 = 15I ,
we can calculate θ under different order m(1 ≤ m ≤ 6).

θN+1 = θN +
PNϕN+1

ϕT
N+1PNϕN+1 + 1

Y�(N + m + 1) (4)

Feedback Control-Based Database Connection Management 77

where

PN+1 = PN −
PNϕN+1ϕ

T
N+1PN

ϕT
N+1PNϕN+1 + 1

ϕN+1 = (Y (N + m − 1), · · · , Y (N),
X(N + m − 1), · · · , X(N))T

Y�(N + m + 1) = Y (N + m + 1) − ϕT
N+1θN

And then we decide the order m using F − test method [14]. We define a loss
function J(m), as is shown in Eq. (5), to describe the error between θ and the real pa-
rameter vector when the system order is m, and we also construct a statistic V (n1, n2),
as is shown in Eq. (6), to evaluate the variation of J(m) when the system order is
changed from n1 to n2. According to F − test, V (n1, n2) follows the distribution
F (2(n2 − n1), L − 2n2) when n2 > n1 ≥ m and L is large enough, where L is the
length of experimental samples.

J(m) =
m+N∑

k=m+1

{
Y (k) −

m∑
i=1

[aiY (k − i) + biX(k − i)]

}2

(5)

V (n1, n2) =
J(n1) − J(n2)

J(n2)
N − 2n2

2(n2 − n1)
(6)

Through the experiment, we get that, when n2 = 2 and n1 = 1,V (1, 2) < F0.05

(2, 80) holds with the confidence of 95%. It means that, when the system order is
changed from 1 to 2, there is no significant reduction of the loss function. So m = 1, and
the DBCP can be modeled as a first order linear time-invariant system with a parameter
vector

θ = (−0.0172, 0.7463)T . (7)

3.2 Controller Design

We design a PI controller for the approximate linear model to implement PDD in a
DBCP. Integral control is able to eliminate the steady state error and PI controller is
easy to be implemented in programme. We can use transfer functions, as are shown in
Eq. (8)(9)(10), to describe the PI controller, the linear model given by Eq. (2), and the
closed-loop system, which is shown in Fig.1. Performance specifications the closed-
loop system should meet are as follows. The steady state error is zero and the settling
time is no more than 300 seconds.

D(z) = KP +
KIT (z + 1)

2(z − 1)
(8)

G(z) =
∑m

i=1 biz
m−i

zm −
∑m

i=1 aizm−i
(9)

GC(z) =
D(z)G(z)

1 + D(z)G(z)
(10)

78 W. Pan et al.

�x(k) = x(k) − x(k − 1)

= KP [(1 +
TKI

KP
)e(k) − e(k − 1)] (11)

To construct a system that satisfies the pre-specified performance, we use Root Lotus
tool in MATLAB to place the closed-loop poles and get the parameters KP and KI

for the PI controller. According to the incremental algorithm, we can get the output
increment of the controller at the kth sampling time by Eq. (11) and finally we get
�x(k) = 0.42e(k) − 0.1e(k − 1).

e x y
PI

r
G

Fig. 1. Feedback control diagram with a PI controller

3.3 The Closed-Loop System

We give a description of the closed-loop system components from the perspective of
control theory. As is shown in Fig.2, at the kth sampling instant, the monitor is invoked
to calculate the average queueing delays d̄A(k) and d̄B(k) during the last sampling

interval for two classes of requests. Then the controller compares the delay ratio d̄A(k)

d̄B(k)

with the desired value δA

δB
, and calculates a new probability ratio PB(k)

PA(k) according to

the error measured. According to Eq.(11), we can get PB(k)
PA(k) = �x(k) + PB(k−1)

PA(k−1) .

Suppose that PB(0)
PA(0) = 1, we can get PB(k)

PA(k) = 1 +
∑k

i=1 �x(i). The scheduler acts as
an actuator. Once a database connection is available, the scheduler generates a random
sample r from the uniform distribution U(0, 1). If r ≤ PA(k) = 1

2+
∑

k
i=1 �x(i)

, class

A gets the connection, or else class B. To reduce the overhead for generating random
samples, a sequence of random samples S, can be generated and stored in the scheduler
before it works.

3.4 System Implementation and Extension

We firstly introduce the implementation of the closed-loop system based on the Tomcat
application server [1]. As a standard JSP/Servlet container, Tomcat supports data access
using JSP pages and java classes of Servlet based on DBCP. When a dynamic request,
which is mapped to a JSP page or a Servlet class, calls the function getConnection(),
the classifier puts the request into a virtual queue, Queue A or Queue B, as is in Fig.2,
according to its source IP. At the same time the monitor records its arrival time at the
queue. When a database connection becomes available, the scheduler decides which
queue will get the connection and makes the function getConnection() return from the
queue. When the request at the queue head gets the connection available, the monitor
will record its departure time and get its queueing delay. When a request finishes data
access by calling closeConnection(), a connection immediately becomes available for

Feedback Control-Based Database Connection Management 79

D
B

 C
onnections

Controller

Queue B

Classifier

Queue ARequests

Scheduler

Monitor

Reference Error

((), ())AS k P k

() : ()B AP k P k() : ()A Bd k d k

Fig. 2. Control loop for PDD

reusing. Periodically, the monitor will recalculate d̄A(k)

d̄B(k)
, and the PI controller, which

is implemented as a java thread, will changes PB(k)
PA(k) according to Eq.(11). Member

functions, such as SetReferenceV alue(), are also implemented in the DBCP. All of
our implementation, which just needs to modify the code of the DBCP, is transparent to
web application developers and website managers. It also brings convenience for us to
deploy the DBCP in other web application servers.

Secondly, we discuss how our implementation for two classes of requests can be
extended to the general case for n (n ≥ 2) classes. We can divide n classes into n − 1
overlapped groups where group j(1 ≤ j ≤ (n − 1)) includes class j and j + 1. Each
group has a PI controller and some pre-specified delay differentiation parameters. PDD
for each group is the case for two classes, just as described in above. Suppose that at the
kth sampling time, the average delay for class i(1 ≤ i ≤ n) is d̄i(k), and the probability
for class i to get connections is Pi(k) (Σn

i=1Pi(k) = 1), the controller output xj(k+1)
for group j can be calculated according to Eq.(11). We can get P1(k+1), . . . , Pn(k+1)
by solving Eq.(12).In this way, the DBCP can provide PDD service for more than two
classes of dynamic requests.{

Pj(k+1)
Pj+1(k+1) = xj(k + 1), (1 ≤ j ≤ (n − 1))

Σn
i=1Pi(k + 1) = 1

(12)

Thirdly, we discuss how to reduce the average delay for each service class by us-
ing the shortest-job first (SJF) scheduling policy. In the closed-loop system in above,
dynamic requests of each class are served in a first-come-first-serve (FCFS) manner.
For static requests, it has been proven that shortest-remain-processing-time (SRPT)
scheduling policy can reduce the mean response time by nearly a factor of ten [25].
However, job sizes for dynamic requests are always unknown in advance and many dy-
namic requests can not be interrupted. As a result, SRPT scheduling policy can not be
used directly in the DBCP. In [24], SJF scheduling policy was implemented for web
sites interactions processing. In our implementation of PDD in the DBCP, the sizes
of dynamic requests are generated in advance and SJF scheduling policy may bring

80 W. Pan et al.

performance improvement for dynamic requests processing when providing PDD ser-
vice meanwhile.

4 Experiments

4.1 Test-Bed and Workloads

Our test-bed consists of a dispatcher, a back-end server, and three client machines,
each with a 2.80GHz Pentium processor and 512 MB RAM. Three client machines run
Linux-2.4.18 and generate web traffic using the modified SURGE [7] workload gener-
ator, which can simulate a number of real-world clients to send dynamic requests. The
back-end server runs Tomcat 5.5.17 and Oracle 9i for handling dynamic requests. The
feedback control-based DBCP works in Tomcat. On the dispatcher machine, Apache
2.0.53 works as a load balancer and uses Mod jk [1]communicating with the back-
end server. In such a scalable architecture, static requests can be processed by the cache
module in Apache, and more back-end servers can be added to share the dynamic work-
load of the whole system according to pre-specified load-balancing strategies.

TomcatApache

Mod_jk Pool

Oracle 9i

Dynamic
Response

Dynamic
 Request

DB Connections

Fig. 3. Architecture of the server system

Previous researchers have illustrated that, the processing time of a static request is
approximately linear with the size of the requested file [3], which follows the well-
known heavy-tailed distribution. However, it is difficult to find out the distribution of
the processing time for dynamic requests because most of them are CPU-intensive or
I/O-intensive. For this reason, we designed three kinds of workloads for our experi-
ments. The first workload designed follows a deterministic distribution, where all the
dynamic requests have the same processing time, 350ms. The second one fits a uni-
form distribution, where the processing time of a request ranges from 0 to 700ms. The
third one follows a bounded Perato distribution, as is in Eq. (13), which is a typical
heavy-tailed distribution with an upper bound. In practice, we generate the third work-
load using an equivalent bimodal distribution [16], as is in Eq. (14) where xa = 50,
xb = 6050, α = 0.95, that corresponds to the bounded Pareto distribution.

F (x) = 1−(m/x)γ

1−(m/M)γ

where M m, M ≥ x ≥ m, γ ∈ (0, 2)
(13)

f(x) = αδ(x − xa) + (1 − α)δ(x − xb)

where α ≈ 1, δ(x) =
{

1, x = 0;
0, else

(14)

Feedback Control-Based Database Connection Management 81

4.2 Experimental Setup and Results

Three kinds of experiments are conducted to evaluate the performance of the closed-
loop system. Firstly, we want to compare the impacts of different sampling periods on
the closed-loop system and choose the best sampling period T . From the perspective
of control theory, the settling time of a closed-loop discrete system is related to its
sampling period. In principle, a smaller period leads to a shorter settling time. However,
a too small sampling period may make the system enter an oscillatory state and cannot
settle down. The experimental setup is as follows. The total number of worker threads
is configured to be 100, and the pool size is set to be 15. The reference value is 0.5, i.e.
d̄A

d̄B
= 1

2 . We conduct experiments three times under the uniform workload, and each
time with a different sampling period. At the beginning of each experiment, two client
machines are started to simulate 50 clients to generate dynamic requests, one with high
priority and the other with low priority. The third client machine with low priority is
started at 200 seconds to send requests for 10 minutes, which simulates 100 clients to
generate bursty traffic. Each experiment lasts for 30 minutes.

Fig.4 shows the results under different sampling periods. When the sampling period
T is changed from 10 seconds to 15 seconds, the measured curve of delay ratio becomes
much more smooth. But when T is changed from 15 seconds to 20 seconds, there is no
significant improvement. To make a tradeoff between stability and response rate, we
select 15 seconds as the sampling period for the rest of our experiments.

0 500 1000 1500
0

5

10

D
el

ay
/s

ec

T=10sec

class A
class B

0 500 1000 1500
0

1

2

3

4

D
el

ay
 R

at
io

Measured
Reference

0 500 1000 1500
0

5

10

D
el

ay
/s

ec

T=15sec

class A
class B

0 500 1000 1500
0

1

2

3

4

D
el

ay
 R

at
io

Measured
Reference

0 500 1000 1500
0

5

10

D
el

ay
/s

ec

T=20sec

Time/sec

class A
class B

0 500 1000 1500
0

1

2

3

4

D
el

ay
 R

at
io

Time/sec

Measured
Reference

Fig. 4. PDD under different sampling periods

82 W. Pan et al.

Secondly, we focus on PDD in the DBCP under different kinds of workloads. Pa-
rameters of the closed-loop system are configured as in the first kind of experiments.
We conduct two experiments, which are under deterministic and heavy-tailed workload
respectively. All client machines work as in the first kind of experiments, and there is
also a traffic burst during 200 seconds and 800 seconds generated by the third machine.
Each experiment lasts for half an hour.

Fig.5 shows the results under different workloads. The figure also includes the result
from the first kind of experiment under uniform workload. The DBCP achieves PDD
successfully under different workloads, although the average delay for each class is
fluctuated all the time. Compared with the other two workloads, heavy-tailed workload
makes the average delay for each class vary much more quickly. That is maybe the result
of workload distribution. According to Eq. (14), the size of large requests is nearly 121
times of the size of small ones. A large request will significantly increase the service
demand in the web application server. However, when the number of concurrent requests
changes, the controller reacts quickly to the load variation and ensures that requests with
high priority are served with small delays, no matter under what kind of workload.

0 500 1000 1500
0

5

10

D
el

ay
/s

ec

PDD under deterministic workload

class A
class B

0 500 1000 1500
0

1

2

3

4

D
el

ay
 R

at
io

Measured
Reference

0 500 1000 1500
0

5

10

D
el

ay
/s

ec

PDD under uniform workload

class A
class B

0 500 1000 1500
0

1

2

3

4

D
el

ay
 R

at
io

Measured
Reference

0 500 1000 1500
0

5

10

D
el

ay
/s

ec

PDD under heavy−tailed workload

Time/sec

class A
class B

0 500 1000 1500
0

1

2

3

4

D
el

ay
 R

at
io

Time/sec

Measured
Reference

Fig. 5. PDD under different workloads

Thirdly, we want to compare the performance of the closed-loop systems with differ-
ent scheduling policies. The experiment lasts for 20 minutes. As can be seen from Fig.6,
under the uniform workload, the average delay for each service class with SJF schedul-
ing policy is smaller than that with FCFS scheduling policy. The feedback control-based
DBCP is capable of providing PDD service no matter what kind of scheduling policy is
used.

Feedback Control-Based Database Connection Management 83

0 200 400 600 800 1000 1200
0

2

4

6

8

10
PDD with FCFS scheduling policy under uniform workload

D
el

ay
/s

ec

Time/sec

class A
class B

0 200 400 600 800 1000 1200
0

2

4

6

8

10
PDD with SJF scheduling policy under uniform workload

D
el

ay
/s

ec

Time/sec

class A
class B

Fig. 6. PDD with different scheduling policies

5 Related Work

Many researchers have highlighted the importance of integrating resource management
with quality of service in server systems. In [5], a CPU scheduling algorithm has been
proposed to dynamically allocate CPU cycles to Apache processes. In [6], resource
containers were proposed as as a kernel mechanism to provide service differentiation
by accurate accounting of resource usage. In [8], an observation-based approach was
proposed for QoS guarantees at the kernel level by handling bottleneck resources, the
CPU cycles and the accept queue. Other kernel-based resource allocation mechanisms
for service differentiation can be found in [17]. In [4], a feedback control framework
was proposed to guarantee relative/absolute delay in web servers at the connection level
and controllers were designed to allocate service threads to clients with different pri-
orities. To reduce latencies and overhead from closing and re-establishing connections,
persistent connections are supported as a default by HTTP/1.1. A persistent connec-
tion can transmit a sequence of requests, so connection delay just affects the response
time of the first request over the connection and request level QoS becomes necessary.
Many researchers focused on other QoS metrics e.g. relative hit ratio of web cache [15],
relative rejection ratio of requests [9] and system slowdown [19].

Our solution differs from the above works in many respects. Firstly, most of their
work only addresses workloads with static requests, whereas this paper fundamentally
focuses on dynamic requests and database-driven websites. Secondly, compared with
existing work, our work focuses on providing differentiated service at a request level

84 W. Pan et al.

rather than a connection level, and important dynamic requests can get high priority
when being handled. Thirdly, in our solution, we implement the controller in the DBCP
rather than in the kernel of an operating system, and the DBCP can be deployed in other
web application servers besides Tomcat conveniently.

6 Conclusion

It is a great challenge for Internet servers to provide service differentiations in an un-
predictable and highly-dynamic environment. Proportional differentiated service is an
important service model and response delay is the key performance metric for web
application servers. This paper describes the approach for proportional delay differen-
tiations in web application servers through feedback control-based database connection
management. We implement a PI controller in a real DBCP for web application servers
and design three kinds of workloads for simulation of the closed-loop system. We ex-
perimentally demonstrate that, the controller is effective in handling different kinds of
workloads and the feedback control-based DBCP is capable of providing service differ-
entiation. Feedback control theory presents its potential for better resource management
and QoS guarantees in web application servers.

References

1. The apache tomcat document, http://tomcat.apache.org
2. Abbad, M., Zahratahdi, T.: An algorithm for achieving proportional delay differentiation.

Operations Research Letters 36(2), 196–200 (2008)
3. Abdelzaher, T.F., Shin, K.G., Bhatti, N.: Performance guarantees for Web server endsys-

tems: A control-theoretical approach. IEEE Transactions on Parallel and Distributed Sys-
tems 13(1), 80–96 (2002)

4. Abdelzaher, T.F., Stankovic, J.A., Lu, C., Zhang, R., Lu, Y.: Feedback performance control
in software services. IEEE Control Systems 23(3) (June 2003)

5. Almeida, J., Dabu, M., Manikutty, A., Cao, P.: Providing differentiated levels of service in
web content hosting. In: Proceedings of the SIGMETRICS Workshop on Internet Server
Performance (1998)

6. Banga, G., Druschel, P., Mogul, J.C.: Resource containers: A new facility for resource man-
agement in server systems. In: Proceedings of the Symposium on Operating Systems Design
and Implementation (1999)

7. Barford, P., Crovella, M.E.: Generating representative web workloads for network and server
performance evaluation. Measurement and Modeling of Computer Systems, 151–160 (1998)

8. Chandra, A., Pradhan, P., Tewari, R., Sahu, S., Shenoy, P.: An observation-based approach
towards self-managing web servers. Computer Communications, 1–15 (2005)

9. Huang, C., Cheng, C., Chuang, Y., Jang, J.R.: Admission control schemes for proportional
differentiated services enabled internet servers using machine learning techniques. Expert
Systems with Applications 31, 458–471 (2006)

10. Kanodia, V., Knightly, E.W.: Ensuring latency targets in multiclass web servers. IEEE Trans-
action on Parallel and Distributed Systems 13(10) (October 2002)

11. Lea, D.: Concurrent Programming in Java: Design Principles and Patterns, 2nd edn. Addison
Wesley Longman, Inc., Amsterdam (2000)

http://tomcat.apache.org

Feedback Control-Based Database Connection Management 85

12. Lee, S.C., Lui, J.C., Yau, D.K.: A proportional-delay diffserv-enabled web server: Admis-
sion control and dynamic adaptation. IEEE Transactions on Parallel and Distributed Sys-
tems 15(5), 385–400 (2006)

13. Lim, K.M., Paik, J., dong Ryoo, J., Joo, S.-S.: Prediction error adaptation of input traffic for
absolute and proportional delay differentiated services. In: Proceedings of the 3rd interna-
tional conference on Quality of service in heterogeneous wired/wireless networks, August
2006, pp. 38–47 (2006)

14. Ljung, L.: System Identification: Theory for the User. Tsinghua University Press, Beijing
(2002)

15. Lu, Y., Abdelzaher, T.F., Saxena, A.: Design, implementation, and evaluation of differenti-
ated caching services. IEEE Transactions on Parallel and Distributed Systems 15(5), 440–452
(2004)

16. Psounis, K., Molinero-Fernndex, P., Prabhakar, B., Papadopoulos, F.: Systems with multiple
servers under heavy-tailed workloads. Performance Evaluation 62(7), 456–474 (2005)

17. Voigt, T., Tewari, R., Freimuth, D.: Kernel mechanisms for service differentiation in over-
loaded web servers. In: Proceedings of the Usenix Annual Technical Conference (2001)

18. Wang, K.C., Ramanathan, P.: End-to-end throughput and delay assurances in multihop wire-
less hotspots. In: Proceedings of the 1st ACM international workshop on Wireless mobile
applications and services on WLAN hotspots, September 2003, pp. 93–102 (2003)

19. Wei, J., Xu, C.: Design and implementation of a feedback controller for slowdown differen-
tiation on internet server. In: WWW 2005, May 2005, pp. 10–14 (2005)

20. Wei, J., Xu, C.Z.: Consistent proportional delay differentiation: A fuzzy control approach.
Computer Networks 51(8), 2015–2032 (2007)

21. Wu, C.C., Wu, H.M., Lin, W.: High-performance packet scheduling to provide relative delay
differentiation in future high-speed networks. Computer Networks (December 2007)

22. Ye, N., Gel, E.S., Li, X., Farley, T., Lai, Y.: Web server qos models: applying scheduling rules
from production planning. Computers and Operations Research 32(5), 1147–1164 (2005)

23. Dovrolis, C., Stiliadis, D., Ramanathan, P.: Proportional Differentiated Services: Delay Dif-
ferentiation and Packet Scheduling. In: Proceedings of the ACM SIGCOMM, vol. 10(1), pp.
12–26 (1999)

24. Elnikety, S., Nahum, E., Tracey, J., Zwaenepoel, W.: A method for transparent admission
control and request scheduling in e-commerce web sites. In: WWW 2004, May 2004, pp.
276–286 (2004)

25. Harchol-balter, M., Schroeder, B., Bansal, N., Agrawal, M.: Size-Based Scheduling to Im-
prove Web Performance. ACM Transactions on Computer Systems 21(2), 207–233 (2003)

Research on the Detection of Distributed Denial

of Service Attacks Based on the Characteristics
of IP Flow

Dongqi Wang, Guiran Chang, Xiaoshuo Feng, and Rui Guo

Northeastern University, Computing Centre 310-1,
Shenyang, China

zorrorily@163.com,chang@neu.edu.cn
{shuoner,happyachilles}@163.com

Abstract. IP Flow is classified into the Micro-flow and the Macro-flow,
which provides a way of selecting proper features used to detect DDoS.
Five abstracted features’ capabilities of recognizing DDoS are analyzed
through experiments. With these features as inputs, a neural network
classifier is used to detect DDoS. Experiments’ results show that these
IP Flow based features can be very helpful to DDoS detection if they are
put together.

Keywords: DDoS; IP Flow; Detection; Neural Network.

1 Introduction

Distributed Denial of Service (DDoS) attack presents a very serious threat to
the internet. There are mainly two kinds of researches on DDoS detection: One
is how to select the features to be tested. Another is looking for effective tech-
niques to find out the abnormities shown by features during the attack, which is
to be detected. Feature selecting methods can be divided into wrapper approach
and filter approach [1]. Wrapper approach exploits machine learning algorithm
to evaluate the goodness of features, and performance of learning algorithm is
used as evaluation criterion. On the other hand, filter approach uses underly-
ing characteristics of features as evaluation criterions. One example of wrapper
approach is [2] in which Gavrilis Dimitris et al. used neural network classifier’s
performance as a genetic algorithm’s evaluation criterion to identify a hypo-
optimal feature set. The examples of filter approach are [3] and [4]. Xu Tu et
al. [3] employed an underlying characteristic of network flow OWCD to detect
DDoS, Cheng Guang et al. [4] get features through sampling measurement of
statistics in high speed network. In order to find out the features’ abnormities
during an attack, researchers had employed many kinds of techniques, such as
neural network, hidden Markov model, SVM, data mining [5-8] and so on.

In this paper, a filter approach which selects five statistical features from
IP flow is proposed, and a neural network classifier is designed to find out the

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 86–93, 2008.
c© IFIP International Federation for Information Processing 2008

Research on the Detection of DDoS Attacks Based on the Characteristics 87

abnormities shown by these features during an attack. The information such as
protocols used by attackers, packet’s size of an attack etc, as byproducts, can be
gained during the generation of the features, which are very useful for filtering
DDoS attack.

2 IP Flow Based Feature Selection

IP flow is composed of IP packets arriving one after another. As the basic data
carrying unit of Internet, IP packet holds the upper layer’s information and can
be easily caught and handled. In the following part of this section IP flow will be
divided into the Micro-Flow and the Macro-Flow and we are going to research
how to select effective IP flow based detecting features.

2.1 The Concepts of Micro-Flow and Macro Flow

The Micro-Flow. A Micro-Flow is a packet set who is composed of packets
belonging to the same time interval of Internet, and all these packets have the
same specific characteristics [9,10]. These same specific characteristics are called
keys [10]. A group of commonly used keys are ¡Protocol, SrcIP, SrcPort, DestIP,
DestPort¿. Protocol is the protocol used by the upper layer, SrcIP and SrcPort
are the source IP address and the source port number separately. DestIP and
SrcIP are the destination IP address and the destination port number separately.

The definition of Micro-Flow is helpful in two ways. First, each key group
corresponds to one connection from SrcIP to DestIP, so keys can be used to
describe DDoS connection. Second, a key group contains much information which
can be used by routers and firewalls to operate each packet.

The Macro-Flow. All the packets belonging to one time interval compose a
set which is called the Macro-Flow. Macro-Flow is pooled by Micro-Flows.

The definition of Macro-Flow is helpful in two ways too. First, Detecting
features can be formed on the base of Macro-Flow. Second, the information
contained in the Macro-Flow is the complementarities to keys.

In experiments, we intercept network traffic by time interval i equals to 10s
randomly. On one hand, in order to form the Micro-Flow based features, we
classify packets by different keys. On the other hand, we abstract the Macro-
Flow based features from the whole i directly.

2.2 IP Flow Based Features

Micro-Flow Based Features:

1. Average Number of Packets in Per Flow(ANPPF). Continuously and ran-
domly generated ”legitimate” IP are usually used in attack, so the generating

88 D. Wang et al.

speed of Micro-Flow is quickened, and the packet amount in per flow decrease.
There are commonly 1-3 packets in per flow [9].

ANPPF = (
FlowNum∑

j=1

PacketsNumj)/FlowNum (1)

PacketsNumj is the quantity of packets in the jth flow of a time interval.
FlowNum is the quantity of packets of the whole interval. Figure 1 shows the
experimental comparison of ANPPF between normal traffic and DDoS traffic
(110i-180i).The ANPPF of DDoS traffic which is near 1(attacking traffic is the
mix of DDoS traffic generated by tfn2k and normal traffic of internet. ANPPF of
tfn2k generating traffic is 1) differs from normal ANPPF (ruleless distribution)
significantly.

2. Percentage of Correlative Flow (PCF). During attack, though the victim still
has capability to reply to attacking packets’ ”requests”, the replying packets can
not get to the zombies, because the attacking IP addresses are faked. If flow x
is from SrcIPx=A to DestIPx=B, and flow y is from SrcIPy=B to DestIPy=A,
then we call flow x and y is a pair of Correlative Flow.

PCF = CFNum/FlowNum (2)

CFNum is two times of the pairs of Correlative Flow. PCF represents the ”there
is going-out but no coming-back” characteristic of DDoS. As is shown in figure
2, when DDoS happens (110i-180i), PCF is near 0, while the PCF of normal
traffic is 0.4-0.6. The difference between them is distinguishable.

3. One Direction Generating Speed (ODGS). Flow generating speed quickens
when attack happens or busy time comes. In order to distinguish these two
kinds of situations, ODGS is proposed.

ODGS = (FlowNum − CFNum)/interval (3)

ODGS reflects the sudden increase of traffic when DDoS happens, and it also
reflects the ”there is going-out but no coming-back” characteristic of DDoS.
Figure 4 gives the experimental comparison of ODGS between normal traffic
(110i-180i) and abnormal traffic. ODGS’ order of magnitude in normal traffic
(102i) is much smaller than that in the abnormal traffic (104i).

4. Ports Generating Speed (PGS).

PGS = PortsNum/interval (4)

PortsNum is the number of distinct port in one time interval. Some researchers
select the size of port[2] as a detecting feature, while we find that many newly
emerged services and applications (such as famous p2p application BT) use port
number bigger than 1024, so approach of [2] is not suitable anymore. Through

Research on the Detection of DDoS Attacks Based on the Characteristics 89

ANPPF of Normal and Abnormal Traffic

0

5

10

15

20

25

1 21 41 61 81 101 121 141 161 181 201

Intervals(1 interval=10s)

A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

P
a
c
k
e
t
s

i
n

P
e
r

F
l
o
w

ANPPF

Fig. 1. ANPPF of Normal and Abnormal Traffic

PCF of Normal and Abnormal Traffic

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201

Intervals(1 interval=10s)

P
e
r
c
e
n
t
a
g
e

o
f

C
o
r
r
e
l
a
t
i
v
e

F
l
o
w

PCF

Fig. 2. PCF of Normal and Abnormal Traffic

ODGS of Normal and Abnormal Traffic

0
2000
4000
6000
8000
10000
12000
14000

1 21 41 61 81 101 121 141 161 181 201

Intervals(1 interval=10s)

O
n
e

D
i
r
e
c
t
i
o
n

G
e
n
e
r
a
t
i
n
g

S
p
e
e
d

ODGS

Fig. 3. ODGS of Normal and Abnormal Traffic

PGS of Normal and Abnormal Traffic

0
1000
2000
3000
4000
5000
6000
7000

1 21 41 61 81 101 121 141 161 181 201

Intervals(1 interval=10s)

P
o
r
t
s

G
e
n
e
r
a
t
i
n
g

S
p
e
e
e
d

PGS

Fig. 4. PGS of Normal and Abnormal Traffic

90 D. Wang et al.

deeper investigation, we realize that attackers continuously and randomly gen-
erate port too, so PGS is proposed. As is shown in figure 4, the PGS of normal
traffic is not bigger than 200, while PGS of attacking traffic (110-180i)is over
thousands.

Macro-Flow Based Feature:

Percentage of Abnormal Packets(PAP.) In order to increase the efficiency of at-
tacking, attacking packets’ content parts are usually unfilled or only filled with
very few useless bytes (such as famous attacking tools tfn2k, trinoo). This kind
of procedure results in the increase of abnormal small packets (for example, some
TCP packets are only a little bigger than 40bytes, and UDP packets are only a little
bigger than 28bytes). PAP presents this characteristic of DDoS attack by count-
ing the percentage of abnormal packets in the one i(a Macro-Flow). Figure 5 is the
comparison of PAP of normal traffic and abnormal traffic. As we can see, there
is a significant change of PAP from near 0 to more than 0.9 when DDoS happens
(110i-180i).

PAP of Normal and Abnormal Traffic

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201

Intervals(1 interval=10s)

P
e
r
c
e
n
t
a
g
e

o
f

A
b
n
o
r
m
a
l

P
a
c
k
e
t
s

PAP

Fig. 5. PAP of Normal and Abnormal Traffic

3 Neural Network Classifier

To detect the abnormities shown by features we choose to use a BP neural
network with two layers. There are 5 neurons (because there are 5 features) in
layer 1, and these neurons all use hyperbolic tangent sigmoid function as their
transfer function. Layer 2 has only one neuron using logarithmic sigmoid function
as the transfer function. The output of layer 2 is the output of the whole neural
network, and its value is between 0 and 1. Value 0 presents the normal traffic,
and value 1 presents the abnormal traffic. Mean squared error function is used
as our error performance function, and Levenberg Marquardt (LM) algorithm is
chosen to adjust weights and thresholds.

These five features mentioned earlier are used as the inputs of neural net-
works to do convergence test of different adjusting algorithms. In the experiment,
weights and thresholds are randomly initialized, and inputs (PAP, ANPPF, PCF,

Research on the Detection of DDoS Attacks Based on the Characteristics 91

ODGS, PGS) belonging to 50 intervals are applied. Table 1 is the comparison of
four commonly used adjusting algorithms’ convergence performance, and the val-
ues in table 1 are the average values of 50 tests to each algorithm. As is shown,
LM algorithm suits us better from convergence rate to error performance on
average level.

Table 1. The Comparison of BP Algorithms

BFGS OSS RPOP LM

Average Convergence Time 0.9141s 1.079s 0.658s 0.6893s
Average Iteration Times 74.25 100 100 74.87
Average Error Performance 10−10 10−7 10−7 10−18

4 Detecting Experiments

On one hand, victims usually do not want to publicize the details of the attack
they had suffered. On the other hand, currently, few data can describe the whole
profile of DDoS attack. So we use both the UCLA’s data set [11] and the data
generated by our own simulation.

In our own simulation, 200 time intervals randomly intercepted from an out-
going router (kilo mega) of the central node are used as the normal samples
of neural network. Another 200 time intervals are randomly intercepted when
we use 50 hosts running tfn to attack one server behind this router, and these
intervals containing both attack traffic and normal traffic are used as the attack
samples.

UCLA’s data is stored as pure text, and each row of the text is a packet
composed of SrcIP, DestIP, SrcPort, DestPort, packet length and ACK (TCP
packet) et. The attack launched in our own simulation is constant rate attack,
so we choose the constant rate UDP attack data of UCLA as the attack samples.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive

T
r
u
e

P
o
s
i
t
i
v
e

ROC Curve

Chance Line

Fig. 6. Our Own Data ROC Curve

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive

T
r
u
e

P
o
s
i
t
i
v
e

ROC Curve

Chance Line

Fig. 7. UCLA ROC Curve

92 D. Wang et al.

The ROC curves in figure 6 and figure 7 show the sensitivity and accuracy of
the neural network. A ROC curve is a plot with the false positive rate on the X
axis and the true positive rate on the Y axis. The area below the curve reflects
the sensitivity of the neural network. As we can see, the curve is close to both
the Y axis and the point (0, 1) which means that we obtained low false positives
and the classification capability is good.

5 Conclusion

In this paper we present five effective detecting features base on the character-
istics of IP flow: PAP, ANPPF, PCF, ODGS and PGS. These five features can
exploit the abnormalities during DDoS attack. Byproducts of features generation
are helpful for filtering. We prove the capabilities of these five features through
experimental comparison between their normal values and values in attack. A
neural network using LM algorithm to adjust the rights and thresholds is used to
detect abnormalities shown by features. Experiments using our own simulating
data and UCLA data are carried out separately, and the experimental result are
satisfying. As an effective approach, ours is easy to understand and easily to be
carried out. It can be used as a part of common security tool in the core network,
and it can also be attached a filter to in the edge network to relieve the threat
of DDoS. Our future work is to improve the classifier’s performance in real-time.
Filtering Research based on this approach will also be done.

References

1. Park, J.S., Shazzad, K.M., Kim, D.S.: Toward modeling lightweight intrusion de-
tection through correlation-based hybrid feature selection. In: Infromation Security
and Cryptology. First SKLOIS Conference, CISC 2005, Beijing,China, pp. 279–289
(2005)

2. Dimitris, G., Ioannis, T., Evangelos, D.: Feature Selection for Robust Detection
of Distributed Denial-of-Service Attacks Using Genetic Algorithms. Methods and
Applications of Artificial Intelligence 3025, 276–281 (2004)

3. Tu, X., Da-ke, H.: Time series Analysis for One-Way Connection Density of Net-
work Flow. Journal of SiChuan University (Engineer Science Edition) 39(3), 136–
140 (2007)

4. Guang, C., Jian, G., Wei, D.: A Real-Time Anomaly Detection Model Based on
Sampling Measurement in a High-Speed Network. Journal of Software 14(3), 594–
599 (2003)

5. Xiang, Y., Zhou, W.: Intelligent DDoS Packet Filtering in High Speed Network.
In: 3rd International Symposium on Parallel and Distributed Processing and Ap-
plications, ISPA 2005, Nanjing, China, pp. 395–408 (2005)

6. Yi, X., Shun-zheng, Y.: A novel model for detecting application layer DDoS attacks.
In: First international on Computer and Computational Sciences, vol. 2, pp. 56–63.
IEEE press, Hanzhou (2006)

Research on the Detection of DDoS Attacks Based on the Characteristics 93

7. Seo, J., Lee, C., Shon, T., et al.: A New DDoS Detection Model Using Multiple
SVMs and TRA. In: Embedded and Ubiquitous Computing -EUC 2005 Workshops.
EUC 2005 Workshops: UISW, NCUS, SecUbiq,USN, and TAUES, Nagasaki,Japan,
pp. 976–985 (2005)

8. Neng, G., Deng-guo, F., Ji, X.: A Data-Mining Based DoS Detection Technique.
Chinese Journal of Computers 29(6), 944–951 (2006)

9. Maglaris, C.S.V.: Detecting incoming and outgoing DDoS attacks at the edge using
a single set of network characteristics. In: Proceedings 10th IEEE Symposium on
Computers and Communications, Murcia, Spain, pp. 469–475 (2005)

10. Song, S., Ling, L.: Flow-based Statistical Aggregation Schemes for Network Anom-
aly Detection. In: 2006 IEEE International Conference on Networking, Sensing and
Control, pp. 786–791. IEEE Press, Ft.Lauderdate (2006)

11. Ucla.Sanitized UCLA CSD traffic traces,
http://lever.cs.ucla.edu/ddos/traces/

Password-Authenticated Key Exchange between

Clients in a Cross-Realm Setting�

Shuhua Wu and Yuefei Zhu

Department of Networks Engineering,
Zhengzhou Information Science Technology Institute,

Zhengzhou 450002, China
wushuhua726@sina.com.cn

Abstract. The area of password-based authenticated key exchange pro-
tocols has been the subject of a vast amount of work in the last few years
due to its practical aspects. AuthA is an example of such a technol-
ogy considered for standardization by the IEEE P1363.2 working group.
Unfortunately in its current form AuthA, including some variants, only
considered the classic client and server (2-party) scenarios. In this paper,
based on a variant of AuthA, we consider a quite different paradigm from
the existing ones and propose a provably secure password-authenticated
key exchange protocol in a cross-realm setting where two clients in differ-
ent realms obtain a secret session key as well as mutual authentication,
with the help of respective servers. In our protocol, any honest server is
unable to gain any information on the value of that session key. Moreover,
our protocol is reasonably efficient and has a per-user computational cost
that is comparable to that of the underlying 2-party encrypted key ex-
change.

Keywords: Password; provably secure; cross-realm; authenticated key
exchange.

1 Introduction

The Password-based Authenticated Key Exchange (PAKE) is a protocol which
allows two communicating parties to prove to each other that they know the pass-
word (that is, mutual authentication), and to generate a fresh symmetric key
securely such that it is known only to these two parties (that is, key exchange).
However, since people like to choose simply-guessed strings (e.g. personal iden-
tity, nickname, birthday, etc.) as their passwords, many password-based proto-
cols are vulnerable to replay attack or dictionary attacks [1]. Designing a secure
password-based protocol is a precise task that has attracted many cryptogra-
phers. Due to its practical aspects, the area has been the subject of a vast
amount of work in the last few years [1,2,3,4,5,6,7,8,9]. AuthA is an example of
such a technology considered for standardization by the IEEE P1363.2 working
� This work was partially supported by a grant from the National High Technology

Research and Development Program of China (863 Program) (No. 2007AA01Z471).

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 94–104, 2008.
c© IFIP International Federation for Information Processing 2008

Password-Authenticated Key Exchange between Clients 95

group[11,12]. Unfortunately in its current form AuthA, including some variants,
only considered the classic client and server scenarios and assume that they share
a common password. In a word, AuthA is 2-party password-authenticated key
exchange (2PAKE).

With diversity and development of communication environments in the fields
such as mobile networks, home networking and etc., the end-to-end security is
considered as one of main concerns [10,13]. For example, from a users point
of view, in a mobile computing environment, a secure end-to-end channel be-
tween one mobile user in cell A and another user in cell A or cell B may be a
primary concern. Although 2PAKE protocols are quite useful for client-server
architectures, they are not suitable for large scale end-to-end communication en-
vironments since 2PAKE protocols require every pair of communication entities
to share a password. It is very inconvenient in key management for client-client
communications in large-scale communication environments. To avoid this incon-
venience, some of proposed PAKE protocols are extended to take into account
the 3-party scenario [14,15,16,17,18,19], in which a trusted server exists to me-
diate between two communication parties to allow mutual authentication. Such
protocols only demand that each communication entity shares a password with
a trusted server. However, in practices, they are less considered in a cross-realm
setting like in kerberos system [20,21]. In a cross-realm setting, two clients are in
two different Kerberos realms and hence two servers (who are connected with a
symmetric key) are involved. Some researchers, e.g. [18], think it unnecessary to
consider this case since they have presumed that all servers in the general case
know all users’ passwords. Actually, in the protocols with a cross-realm setting,
it is important to guarantee that one server should not obtain the password of
a client in another realm.

Kerberos system is the first solution to password-authenticated key exchange
in a cross-realm setting but one of the most serious problems in the Kerberos
system is a dictionary attack. To solve this dictionary attack, Byun et al. recently
proposed a password-authenticated key exchange protocol in a cross-realm set-
ting [14], which is a variant of cross-realm authentication in the Kerberos system.
However, S. Wang et al. subsequently found the protocol due to Byun et al. was
insecure [22]. Later, two schemes for password-authenticated key establishment
in a cross-realm setting were proposed in [24,25] but both of them were still
pointed out to be insecure in [26]. To the best of our knowledge, no more work
address the problem in the cross-realm setting and achieves provable security.
Moreover, as noted in [22], a scheme in a single-server setting(3-party setting)
cannot be easily lift up to a scheme in a cross-realm setting since it is a quite
different paradigm from the former. In this paper, based on a variant of Au-
thA in [5], we propose a provably secure password-authenticated key exchange
protocol in a cross-realm setting. Note it is not a trivial work. Difficulties in de-
signing a secure client-client password-based authenticated key exchange scheme
arise from the existence of insider attacks while insider attacks do not need be
considered explicitly in the case of 2-party protocols. Our protocol has several
attractive features. As in [18], we trust as little as possible the third party and

96 S. Wu and Y. Zhu

assume that the servers are honest but curious, which roughly means that, even
though the servers’ help is required to establish a session key between two users
in the system, the servers should not be able to gain any information on the
value of that session key. Please note that key distribution schemes usually do
not achieve this property. We can show that our protocol has key privacy with
respect to the server. Moreover, our scheme is reasonably efficient and has a per-
user computational cost that is comparable to that of the underlying 2-party
encrypted key exchange.

The remainder of this paper is organized as follows. In Section 2, we introduce
the formal model of security for password-based authenticated key exchange in
a cross-realm setting. Next, in Section 3, we recall the algorithmic assumptions
upon which the security of our protocol is based upon. Section 4 then presents
our password-based key exchange protocol along with its security claims and
rigorous proof. Efficiency analysis is also presented in this section. In the last
section, we conclude this paper.

2 Security Model for Password-Based Key Exchange

A secure password-based key exchange is a key exchange protocol where the
parties use their passwords in order to derive a common session key sk that will
be used to build secure channels. Loosely speaking, such protocols are said to be
secure against dictionary attacks if the advantage of an attacker in distinguishing
a real session key from a random key is less than O(n/ |DC|) + ε(l), where |DC|
is the size of the dictionary DC, n is the number of active sessions and ε(l) is a
negligible function depending on the security parameter l.

In this section, we introduce the formal security models which will be used
in next section when we show that our protocol is secure in the random-oracle
model. The model is a slightly different variant of that introduced in [19], in
which two trusted servers are contained.

2.1 Protocol Syntax

Protocol participants. The end-to-end system we consider is made up of
three disjoint sets: S, the set of trusted servers; C, the set of honest clients; and
E , the set of malicious clients. We also denote the set of all clients by U . That is,
U = C ∪ E . In a cross-realm setting, we assume S to contain two trusted servers.

As in [18], the inclusion of the malicious set E among the participants is
one the main differences between the 2-party and the multi-party models. Such
inclusion is needed in the multi-party model in order to cope with the possibility
of insider attacks. The set of malicious users did not need to be considered in
the 2-party due to the independence among the passwords shared between pairs
of honest participants and those shared with malicious users.

Long-lived keys. Two servers are connected with a symmetric key. Each
participant U ∈ U holds a password pwU . Each server S ∈ S holds a vec-
tor pwS = 〈pwS [U]〉U∈U with an entry for each client, where pwS [U] is the

Password-Authenticated Key Exchange between Clients 97

transformed password, following the definition in [3]. In a symmetric model,
pwS [U] = pwU , but they may be different in some schemes. The set of pass-
words pwE , where E ∈ E , is assumed to be known by the adversary.

2.2 The Security Model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack
(see literature for more details [3,5].) The types of oracles available to the ad-
versary are as follows:

– Execute(U i1
1 , Sj1

1 , Sj2
2 , U i2

2): This query models passive attacks in which the
attacker eavesdrops on honest executions among the client instances U i1

1

and U i2
2 and trusted server instances Sj1

1 and Sj2
2 . The output of this query

consists of the messages that were exchanged during the honest execution of
the protocol.

– SendClient(U i, m): This query models an active attack, in which the adver-
sary may intercept a message and then modify it, create a new one, or simply
forward it to the intended client. The output of this query is the message
that client instance U i would generate upon receipt of message m.

– SendServer(Sj , m): This query models an active attack against a server. It
outputs the message that server instance Sj would generate upon receipt of
message m.

– Reveal(U i): If a session key is not defined for instance U i or if a Test
query(see section 2.3) was asked to either U i or to its partner, then return
⊥. Otherwise, return the session key held by the instance U i.

2.3 Security Notions

In order to define a notion of security for the key exchange protocol, we consider
a game in which the protocol P is executed in the presence of the adversary A.
In this game, we first draw some passwords from a dictionary DC, provide coin
tosses and oracles to A, and then run the adversary, letting it ask any number
of queries as described above, in any order.

AKE Security. In order to model the secrecy (semantic security) of the ses-
sion key, we consider a game Gameake(A, P), in which one additional oracle is
available to the adversary: the Test(U i) oracle.

– Test(U i): This query tries to capture the adversary’s ability to tell apart
a real session key from a random one. In order to answer it, we first flip a
(private) coin b and then forward to the adversary either the session key sk
held by U i (i.e., the value that a query Reveal(U i) would output) if b = 1
or a random key of the same size if b = 0.

The Test-oracle can be queried at most once by the adversary A and is only
available to A if the attacked instance U i is Fresh, which is defined to avoid

98 S. Wu and Y. Zhu

cases in which adversary can trivially break the security of the scheme. In this
setting, we say that a session key sk is Fresh if all of the following hold: (1)
the instance holding sk has accepted, (2)both the related clients are honest;
and (3) no Reveal-query has been asked to the instance holding sk or to its
partner (defined according to the session identification). Let Succ denote the
event in which the adversary successfully guesses the hidden bit b used by Test
oracle. The AKE advantage of an adversary A is then defined as Advake

P,DC(A) =
2Pr[Succ] − 1, when passwords are drawn from a dictionary DC. The protocol
P is said to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for any
adversary A running with time t. The definition of time-complexity that we use
henceforth is the usual one, which includes the maximum of all execution times
in the games defining the security plus the code size [23].

3 Algorithmic Assumptions

The security is proved by finding a reduction to the hardness of the Computa-
tional Diffie-Hellman (CDH) problem and the security of the underlying message
authentication schemes. We will briefly introduce these algorithmic assumptions
in this section.

3.1 CDH Assumption

We assume a finite cyclic group G of l-bit prime order q generated by an element
g, in which the operation is denoted multiplicatively. The CDH assumption states
that given gx and gy, where x and y are drawn at random from Zq, it is hard to
compute gxy. Under the computational Diffie-Hellman assumption it might not
be possible for the adversary to compute something interesting about gxy given
gx and gy. This can be defined more precisely by considering an experiment
Expcdh

g,G(A), in which we select two values x and y in Zq, compute X = gx,
and Y = gy, and then give both X and Y to an adversary A. Let Z be the
output of A. Then, the experiment Expcdh

g,G(A) outputs 1 if Z = gxy and 0
otherwise. Then, we define advantage of A in violating the CDH assumption
as Advcdh

g,G (A) = Pr[Expcdh
g,G(A) = 1] and the advantage function of the group

Advcdh
g,G (t), as the maximum value of Advcdh

g,G (A) over all A with time-complexity
at most t.

3.2 Security of Message Authentication Scheme

A message authentication scheme is a pair of polynomial algorithms (MAC,VF).
The function MAC takes a message m and a key k, and it produces a “message
authentication code” (tag) µ =MACk(m). The function VF takes a message m,
a tag µ and a key k, and it returns a bit VFk(m, µ), with 1 standing for accept
and 0 for reject. We require that for any m output with positive probability by
its tag µ, it is the case that VFk(m, µ).

Password-Authenticated Key Exchange between Clients 99

For the security of the underlying message authentication scheme MAC,
we consider the classical definition of existential unforgeability under chosen-
message attack (CMA) due to Goldwasser et al. [27]. By definition, the secu-
rity level for MAC is to prevent existential forgeries, even for an adversary
which has access to the tag generation and verification oracles. We define the
advantage of A in violating the security of MAC with security parameter l as
Adveuf−cma

MAC (A) = Pr[k ← {0, 1}l, (m, µ) ← AMACk(·),VFk(·;·)() : VFk(m; µ) =
1], and the advantage function of MAC, Adveuf−cma

MAC (t) as the maximum value of
the advantage Adveuf−cma

MAC (A) over all A with time-complexity at most t. Note
that A wins the above experiment only if it outputs a new valid authenticator.

4 Our Password-Based Protocol

In this section, we introduce our protocol and provide a rigorous proof of secu-
rity for it based on the hardness of the CDH problem and the security of the
underlying primitives. The security proof is in the random oracle model. It as-
sumes that two clients willing to establish a common secret session key are in
two different Kerberos realms and hence share passwords with two respective
servers (the latter are connected with a symmetric key). As in [18], we trust
as little as possible the third party and assume that the servers are honest but
curious, which roughly means that, even though the servers’ help is required to
establish a session key between two users in the system, the servers should not
be able to gain any information on the value of that session key.

4.1 Description

Our scheme is based on a 2-party password-based key exchange protocols in [5].
It runs between two clients A, B and two servers SA, SB . The client A (resp. B)
and server SA(resp. SB) initially share a low-quality password PWA(resp. PWB),
uniformly drawn from the dictionary DC. The two server are connected with a
symmetric key, i.e. the MAC key K. The description is given in Fig.1, where
(G, g, q) is the represented group; l is a security parameter; Hi: {0, 1}� → {0, 1}l

is a random oracle, for i = 0, 1, 2. In Fig.1, by U2
message←−−−−−
send

U1 we mean that user

U1 sends message to user U2.
At first, the client may send a request to the server to start the protocol(e.g.

the client sends hello information to the server in the TLS (Transport Layer
Security) protocol at the beginning). Then the protocol runs as follows.

1. The server SA(resp. SB) chooses an ephemeral public key by choosing a
random element tA(resp. tB) in Zq and raising g to that power, encrypts it
as TA(resp. TB) using the corresponding password PWA(resp. PWB), and
sends this value to the client A(resp. B) and the other server along with its
identity SA(resp. SB) and the two clients’ identity. Upon receiving a message
from the server SA(resp. SB), the client A(resp. B) decrypts TA(resp. TB) to

100 S. Wu and Y. Zhu

Public information: G, q,Hi

Secret information: PWA, PWB ∈ G, K
Client A Server SA Server SB Client B

tA
R←− Zq tB

R←− Zq

TA ← gtA × PWA TB ← gtB × PWB

A
A,B,SA,TA←−−−−−−−−

send
SA

A,B,SA,TA−−−−−−−−→
send

SB SA
A,B,SB,TB←−−−−−−−−−

send
SB

A,B,SB,TB−−−−−−−−−→
send

B

x
R←− Zq ,X ← gx y

R←− Zq ,Y ← gy

KAS ← (TA/PWA)x KBS ← (TB/PWB)y

Auth1A ← H1(IDAS , KAS) Auth1B ← H1(IDBS , KBS)

A
X,Auth1A−−−−−−−−→

send
SB SA

Y,Auth1B←−−−−−−−−
send

B

KAS ← XtA KBS ← Y tB

Auth1A
?
= H1(IDAS , KAS) Auth1B

?
= H1(IDBS , KBS)

if false, terminates if false, terminates
α ← MACK(A, B, SA, SB , TA, TB , X) β ← MACK(A, B, SA, SB , TA, TB , Y)

SA
SA,X,α−−−−−−→
send

B A
SB,Y,β←−−−−−
send

SB

β
?
= MACK(A, B, SA, SB , TA, TB , Y) α

?
= MACK(A, B, SA, SB , TA, TB , X)

if false, terminates if false, terminates
Auth2A ← H2(IDAS , Y, KAS) Auth2B ← H2(IDBS , X, KBS)

A
Y,Auth2A←−−−−−−−−

send
SA SB

X,Auth2B−−−−−−−−→
send

B

terminates and accepts terminates and accepts

Auth2A
?
= H2(IDAS , Y, KAS) Auth2B

?
= H2(IDBS , X, KBS)

if false, terminates if false, terminates
K ← Y x K ← Xy

sk ← H0(ID, K) sk ← H0(ID, K)
terminates and accepts terminates and accepts

Fig. 1. Our password-based authenticated key exchange protocol

recover the server’s ephemeral public key, chooses a random index x(resp. y)
in Zq, exponentiates it to that power as the Diffie-Hellman keys KAS(resp.
KBS), and at the same time also raises g to the that power as his ephemeral
public key X(resp. Y). Then the client computes the authenticators Auth1A

(resp. Auth1B) via a hash function H1 so that he can send X (resp. Y)to the
server SA(resp. SB) in an authenticated way. For simplicity, IDAS and IDBS

represent (A, B, SA, TA, X, PWA) and (A, B, SB, TB, Y, PWB) respectively.
2. Upon receiving the messages from both the client A(resp. B) and the other

server, the server SA(resp. SB) exponentiates the client’s ephemeral public
key to the tA-th (resp. tB-th) power as the Diffie-Hellman keys KAS(resp.
KBS). Then the server computes the MAC tag α (resp. β) with the symmet-
ric key K so that he can transfer X (resp. Y)to the other server SB(resp.
SA) in a secure way. Upon receiving this messages, the server SA(resp. SB)
first checks the MAC tag β (resp. α) is valid. If it is valid, the server will
proceed to compute the authenticators Auth2A (resp. Auth2B) via a hash
function H2 so that he can forward Y (resp. X) to he client A(resp. B) in
an authenticated way.

3. Upon receiving Y (resp. X) from the server, the client A(resp. B) first checks
the authenticators Auth2A (resp. Auth2B) is valid. If it is valid, he computes
the Diffie-Hellman key K and then uses this value to derive the session key sk
via a hash function H0. In the end, he accepts and terminates the execution
of the protocol. For simplicity, ID represents (A, B, X, Y).

Password-Authenticated Key Exchange between Clients 101

All throughout the course, if any participant receives an invalid authenticator,
he simply abolishes and terminates the execution of the protocol.

How the Password Becomes an element in G. Since the password PW
appears as an element of G in the computations for our scheme, some addi-
tional function is needed to obtain this element from the password string. In the
protocol description, we do not care about details of the function and simply
use the result PW (in group G) as the “effective password” instead: anyone
knowing PW is actually able to impersonate the client or the server, and the
security proof shows that attacking the protocol reduces to finding PW . In other
words, at the protocol level, PW is the password needed for authentication and
password is just a way to remember it.

Notes. One should remark that K is long-lived key. And thus a nonce is
necessarily included in computing α and β in order to prevent replay attacks. To
do so, each server also sends to another server its ephemeral public key, which
will be included in computing the MAC tag as its nonce.

Efficiency. Our protocol is quite efficient, only requiring a small amount of
computation by each user. In what concerns MAC computations and hash com-
putations, each client only has to perform 3 hash computations; and each server
only has to perform 2 MAC computation and 2 hash computations. All these
can be done efficiently and their computational complexity can be neglected.
The most expensive part of our protocol is the number of exponentiation, which
entails the highest computational complexity. Since each participant needs to
perform 2 exponentiations, our protocol has a per-user computational cost that
is comparable to that of the underlying two-party encrypted key exchange.

In addition, from the view of the client side, our protocol is very similar to a
2PAKE with explicit mutual authentication. If the client computes his session
key using sk = H1(A, · · · , SA, TA, X, · · · , KAS) instead, it shifts to run a 2PAKE
protocol with the server. Thus we do not need two separate programme codes to
support client-server and client-client PAKE respectively. Instead we can use a
common programme to support both them, which saves storage resources. This
is very attractive in resource constrained environments.

4.2 Security

As the following theorem states, our proposal is a provably secure password-
based key exchange protocol as long as the CDH problem is hard in G and the
underlying message authentication scheme is secure. The specification of this
protocol is found on Fig.1.

Theorem 1. Let DC be a uniformly distributed dictionary of size |DC|, and
MAC be a message authentication scheme. Let P describe the password-based
authenticated key exchange protocol associated with these primitives as defined
in Fig.1. Then Advake

P,DC(A) ≤ (2qp+qs)2

q + q2
h+2qs

2l + 6qs

|DC| + 2qsAdveuf−cma
MAC (t) +

4q2
hAdvcdh

g,G (qh, t + 2τ), where qs denotes the number of active interactions with
the parties (Send-queries); qp denotes the number of passive eavesdroppings

102 S. Wu and Y. Zhu

(Execute-queries); qh denotes the number of hash queries to Hi; and τ denotes
the computational time for an exponentiation in G.

Due to the limitation of the paper length, the complete proof of Theorem 1 is
to be included in the full version of this paper.

Finally, we come to consider key privacy with respect to the servers. Since a
server is unable to deduce the Diffie-Hellman key K from the clients’ ephemeral
public keys X and Y (due to computational Diffie-Hellman assumption), he will
be unable to retrieve any information about the session key sk between the two
clients. Thus, we have

Theorem 2. Our password-based authenticated key exchange protocol described
in Fig.1 has key privacy with respect to the servers as long as the CDH assump-
tion holds in G.

5 Conclusion

We have presented the new PAKE protocol in a cross-realm setting and proved
the security for it in the random-oracle model. Our protocol has several attractive
features. In our protocol, any honest server is unable to gain any information on
the value of that session key. Moreover, our scheme is reasonably efficient and
has a per-user computational cost that is comparable to that of the underlying
two-party encrypted key exchange. In addition, from the view of the client side,
our protocol is very similar to a 2PAKE with explicit mutual authentication. We
can thus use a common programme to support both client-server and client-client
applications, which saves storage resources. This is very attractive in resource
constrained environments.

References

1. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: Proceedings of the 1992 IEEE Computer
Society Symposium on Research in security and Privacy, Oakland, California,USA,
pp. 72–84. IEEE Computer Society Press, Washington (1992)

2. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

5. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004)

Password-Authenticated Key Exchange between Clients 103

6. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Proceedings of the 2003 Advances in Cryptology (EUROCRYPT 2003),
Warsaw, Poland, pp. 524–543. Springer, Berlin (2003)

7. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001)

8. Abdalla, M., Pointcheval, D.: Simple Password-Based Encrypted Key Exchange
Protocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208.
Springer, Heidelberg (2005)

9. Abdalla, M., Chevassut, O., Pointcheval, D.: One-time verifier-based encrypted key
exchange. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 47–64. Springer,
Heidelberg (2005)

10. Varadharajan, V., Mu, Y.: On the Design of Security Protocols for Mobile Com-
munications. In: Proceedings of Twelfth Annual Computer Security Applications
Conference, pp. 78–87. IEEE Computer Society Press, Los Alamitos (1996)

11. Bellare, M., Rogaway, P.: The AuthA protocol for password-based authenticated
key exchange. Contributions to IEEE P1363 (March 2000)

12. MacKenzie, P.D.: The PAK suite: Protocols for password-authenticated key ex-
change. Contributions to IEEE P1363.2 (2002)

13. Boyd, C., Mathuria, A.: Key establishment protocols for secure mobile communi-
cations: A selective survey. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS,
vol. 1438, pp. 344–355. Springer, Heidelberg (1998)

14. Byun, J.W., Jeong, I.R., Lee, D.H., Park, C.-S.: Password-authenticated key ex-
change between clients with different passwords. In: Deng, R.H., Qing, S., Bao, F.,
Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 134–146. Springer, Heidelberg
(2002)

15. Wen, H.-A., Lee, T.-F., Hwang, T.: Provably secure three-party password-based
authenticated key exchange protocol using Weil pairing. IEE Proceedings — Com-
munications 152(2), 138–143 (2005)

16. Lin, C.-L., Sun, H.-M., Hwang, T.: Three-party encrypted key exchange: Attacks
and a solution. ACM SIGOPS Operating Systems Review 34(4), 12–20 (2000)

17. Yeh, H.-T., Sun, H.-M., Hwang, T.: Efficient three-party authentication and key
agreement protocols resistant to password guessing attacks. Journal of Information
Science and Engineering 19(6), 1059–1070 (2003)

18. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

19. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with Appli-
cations to Password-based Authentication. In: Patrick, S., Yung, A. (eds.) FC 2005.
LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005)

20. Steiner, J.G., Newman, B.C., Schiller, J.I.: Kerberos: An Authentication Service
for Open Network Systems. In: USENIX Conference Proceedings, February, 1988,
pp. 191–202 (1988)

21. Jaspan, B.: Dual-workfactor Encrypted Key Exchange: Efficiently Preventing Pass-
word Chaining and Dictionary Attacks. In: Proceedings of the 6th Annual USENIX
Security Conference, July 1996, pp. 43–50 (1996)

22. Shuhong, W., Jie, W., Maozhi, X.: Weaknesses of a password-authenticated key ex-
change protocol between clients with different password. In: Proceedings of the 2nd
International Conference on Applied Cryptography and Network Security (ACNS
2004), Yellow Mountain, China, pp. 414–425. Springer, Berlin (2004)

104 S. Wu and Y. Zhu

23. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

24. Yin, Y., Bao, L.: Secure Cross-Realm C2C-PAKE Protocol. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 395–406. Springer, Hei-
delberg (2006)

25. Byun, J.W., Lee, D.H., Lim, J.: Efficient and Provably Secure Client-to-Client
Password-Based Key Exchange Protocol. In: Zhou, X., Li, J., Shen, H.T., Kitsure-
gawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 830–836. Springer,
Heidelberg (2006)

26. Phan, R.C.-W., Goi, B.: Cryptanalysis of two provably secure C2C-PAKE pro-
tocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp.
104–117. Springer, Heidelberg (2006)

27. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

Forward Secure Password-Based Authenticated

Key Distribution in the Three-Party Setting�

Shuhua Wu and Yuefei Zhu

Department of Networks Engineering,
Zhengzhou Information Science Technology Institute,

Zhengzhou 450002, China
wushuhua726@sina.com.cn

Abstract. Key establishment protocols are used for distributing shared
keying material in a secure manner. In 1995, Bellare and Rogaway pre-
sented a three-party server-based key distribution (3PKD) protocol. But
the protocol was recently found insecure and then was fixed by Raymond
Choo et al.. But forward-secrecy is not considered in the revised protocol.
In this paper, we demonstrate that it is not forward secure indeed. We
then revise the protocol to be a password-based authenticated key distri-
bution in the three-party setting and prove our protocol is forward secure
in the random-oracle and ideal-cipher models under the Password-based
Chosen-basis Gap Diffie-Hellman assumption. Our protocol is quite sim-
ple and elegant, and rather efficient when compared to previous solutions.

Keywords: password, forward-secure, three-party.

1 Introduction

The need for authentication is obvious when two entities communicate on the
Internet. The password-based mechanism is useful for user authentication in
computer network systems. It allows users to be authenticated by remote com-
puter systems via easily memorable passwords and in the absence of public-key
infrastructures or pre-distributed symmetric keys. However, since people like to
choose simply-guessed strings (e.g. personal identity, nickname, birth day, etc.)
as their passwords, many password-based systems are vulnerable to replay attack
or dictionary attacks [1]. Designing a secure password-based system is a precise
task that has attracted many cryptographers. Bellovin and Merritt [1] proposed
the encrypted key exchange (EKE) protocol in 1992. The EKE protocol enables
two communication entities to authenticate each other and to establish a session
key for securing later transmissions via a weak password. Since then, numerous
two-party password-based authenticated key exchange (2PAKE) protocols have
been proposed to improve security and performance. However, only a few take

� This work was partially supported by a grant from the National High Technology
Research and Development Program of China (863 Program) (No. 2007AA01Z471).

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 105–115, 2008.
c© IFIP International Federation for Information Processing 2008

106 S. Wu and Y. Zhu

into account the 3-party scenario, e.g., [2,3,4,5,6,7,8], where each communication
entity shares a password with a trusted server and any two communication enti-
ties can be achieved mutual authentication and secure communication through
the server’s assistance. Moreover, to the best of our knowledge, with the excep-
tion of the protocols proposed in [6,7,8], none of the proposed the three-party
password-based authenticated key exchange(3PAKE) enjoys provable security.
However, the protocols in [7,8] were subsequently shown insecure in [9] and [10]
respectively. As for the protocol proposed in [6], the security was proved in a
model with no Corrupt oracle and thus the forward security for it was still
unknown. Other protocols, such as the symmetric-key-based key distribution
scheme of Bellare and Rogaway [11], do consider the 3-party setting, but not in
the password-based scenario. Recently, the protocol [11] was found insecure and
fixed by by Raymond Choo et al. in [12]. Yet, forward-secrecy is not considered
in the revised protocol.

In this paper, we demonstrate that it is not forward secure indeed. We then
revise the protocol to be a password-based authenticated key distribution in
the three-party setting. One should remark that adding authentication ser-
vices to a key establishment protocol is a not trivial since redundancy in the
flows of the protocol can open the door to different forms of attacks [13].
Fortunately, we can prove our protocol is forward secure in the random-oracle
[14] and ideal-cipher models [15] under the Password-based Chosen-basis Gap
Diffie-Hellman assumption (see section 4). Our protocol is quite simple and
elegant and rather efficient when compared to previous solutions. In particu-
lar, the costs for each participant of the new 3-party protocol are comparable
to those of a 2-party password-based key exchange protocol. Besides, a three
party password-based key distribution protocol is the underlying primitive of
the generic construction in [6]. We hope one will leverage our work to obtain
tighter and more meaningful security measurements for the forward-secrecy of
the protocol.

The remainder of this paper is organized as follows. In Section 2, we introduce
the formal model of security for for 3-party key exchange. Next, in Section 3, we
recall the computational assumptions upon which the security of our protocol
is based upon. Section 4 describes the 3PKD revised by Raymond Choo et
al. and demonstrates that the revised protocol is not forward secure indeed.
Section 5 then presents the improved protocol— our 3-party password-based
key distribution protocol— along with its security claims and rigorous proof. In
the last section, We conclude this paper.

2 Security Model for Three-Party Key Exchange

In this section, we introduce the formal security models which will be used in
next section when we show that our protocol is secure in the random-oracle
model. The model was proposed in 2000 by Bellare, Pointcheval and Rogaway
[15], hereafter referred to as the BPR2000 model.

Forward Secure Password-Based Authenticated Key Distribution 107

2.1 The Security Model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack
(see literature for more details [15,16].) The types of oracles available to the
adversary are as follows:

– Execute(U i1
1 , Sj , U i2

2): This query models passive attacks in which the at-
tacker eavesdrops on honest executions among the client instances U i1

1 and
U i2

2 and trusted server instance Sj . The output of this query consists of the
messages that were exchanged during the honest execution of the protocol.

– SendClient(U i, m): This query models an active attack, in which the adver-
sary may intercept a message and then modify it, create a new one, or simply
forward it to the intended client. The output of this query is the message
that client instance U i would generate upon receipt of message m.

– SendServer(Sj , m): This query models an active attack against a server. It
outputs the message that server instance Sj would generate upon receipt of
message m.

– Reveal(U i): If a session key is not defined for instance U i or if a Test query
was asked to either U i or to its partner, then return ⊥. Otherwise, return
the session key held by the instance U i.

2.2 Security Notions

In order to define a notion of security for the key exchange protocol, we consider
a game in which the protocol P is executed in the presence of the adversary A. In
this game, we first choose the long-lived keys for each participant, provide coin
tosses and oracles to A, and then run the adversary, letting it ask any number
of queries as described above, in any order.

Forward Security. In order to model the forward secrecy (semantic security) of
the session key, we consider a game Gameake−fs(A, P), in which two additional
oracles are available to the adversary: the Test(U i) and Corrupt(U): oracle.

– Test(U i): This query tries to capture the adversary’s ability to tell apart
a real session key from a random one. In order to answer it, we first flip a
(private) coin b and then forward to the adversary either the session key sk
held by U i (i.e., the value that a query Reveal(U i) would output) if b = 1
or a random key of the same size if b = 0.

– Corrupt(U): This query returns to the adversary the long-lived key (e.g.
passwords pwU in the password-based scenario) for participant U . As in
[15], we assume the weak corruption model in which the internal states of
all instances of that user are not returned to the adversary.

The Test-oracle can be queried at most once by the adversary A and is only
available to A if the attacked instance U i is FS-Fresh, which is defined to avoid
cases in which adversary can trivially break the security of the scheme. In this
setting, we say that a session key sk is FS-Fresh if all of the following hold:

108 S. Wu and Y. Zhu

(1) the instance holding sk has accepted, (2) no Corrupt-query has been asked
since the beginning of the experiment; and (3) no Reveal-query has been asked
to the instance holding sk or to its partner (defined according to the session
identification). In other words, the adversary can only ask Test-queries to in-
stances which had accepted before the Corrupt query is asked. Let Succ denote
the event in which the adversary successfully guesses the hidden bit b used
by Test oracle. The FS-AKE advantage of an adversary A is then defined as
Advake−fs

P (A) = 2Pr[Succ] − 1 . The protocol P is said to be (t, ε)-FS-AKE-
secure if A’s advantage is smaller than ε for any adversary A running with time
t. The definition of time-complexity that we use henceforth is the usual one,
which includes the maximum of all execution times in the experiments defining
the security plus the code size [17].

In the password-based scenario, key exchange protocols are said to be secure
against dictionary attacks if the advantage of an attacker in distinguishing a real
session key from a random key is less than O(n/ |D|)+ ε(k) where |D| is the size
of the dictionary D, n is the number of active sessions and ε(k) is a negligible
function depending on the security parameter k.

Note 1. In the original security models, A was required to output the guess bit
of b immediately after making a Test query. However, such a requirement is
not strong enough to guarantee security for certain applications(see section 4).
Therefore, this restriction has been removed in the current models.

3 Algorithmic Assumptions

The arithmetic is in a finite cyclic group G = 〈P 〉 of order a k-bit prime number
q, where the operation is denoted addictively.

3.1 GDH-Assumption

A (t, ε)−CDHP,G attacker, in a finite cyclic group G of prime order q with P as
a generator, is a probabilistic machine ∆ running in time t such that its success
probability Succcdh

P,G(A), given random elements xP and yP to output xyP , is
greater than ε:

Succcdh
P,G(A) = Pr[∆(xP, yP) = xyP] ≥ ε.

We denote by Succcdh
P,G(t) the maximal success probability over every adversaries

running within time t. The CDH-Assumption states that Succcdh
P,G(t) ≥ ε for any

t/ε not too large.
A (t, n, ε) − GDHP,G attacker is a (t, ε) − CDHP,G attacker, with access to

an additional oracle: a DDH-oracle, which on any input (xP, yP, zP) answers
whether z = xy mod q. Its number of queries is limited to n. As usual, we
denote by Succgdh

P,G(n, t) the maximal success probability over every adversaries
running within time t. The GDH-Assumption states that Succgdh

P,G(n, t) ≥ ε for
any t/ε not too large [18].

Forward Secure Password-Based Authenticated Key Distribution 109

3.2 PCGDH-Assumption

The so-called Password-based Chosen-basis CDH (PCCDH) problem is a
variation of the computational Diffie-Hellman that is more appropriate to the
password-based setting: Let D = {1, · · · , |D|} be a dictionary containing |D|
equally likely password values. Now let us consider an adversary A that runs
in two stages. In the first stage, the adversary is given as input two random
elements U and V in G as well as the dictionary D and it outputs an element M
in G (the chosen-basis). Next, we choose a password pw ∈ D randomly and give
it to the adversary. The goal of the adversary in this second stage is to output
K = CDH(M +pwU, V). We denote by Succpccdh

P,G,D(t) the maximal success prob-
ability over every adversaries A running within time t. An (t, ε)−PCCDHP,G,D
attacker is a probabilistic machine running in time t such that its success prob-
ability Succpccdh

P,G,D(A) is greater than 1/|D|+ ε. The PCCDH-Assumption states
that Succpccdh

P,G,D(t) ≥ 1/|D| + ε for any t/ε not too large. Fortunately, the new
assumption is not stronger than the CDH-Assumption [19,20]. Similarly, we can
define the PCGDH-Assumption.

4 Rmarks on Raymond Choo’s protocol

In this section, we revisit Raymond Choo’s protocol and demonstrate that the
revised protocol is not forward secure indeed.

Fig. 1. An execution of Raymond Choo’s protocol

As illustrated in Fig.1., Raymond Choo’s protocol involves three parties, a
trusted server S and two principals A and B who wish to establish communi-
cation. The security goal of this protocol is to distribute a session key between
two communication principals (i.e. the key establishment goal), which is suitable
for establishing a secure session. In the protocol, the notation {message}Kenc

AS

denotes the encryption of some message under the encryption key Kenc
AS and the

notation [message]KMAC
AS

denotes the computation of MAC digest of some mes-
sage under the MAC key KMAC

AS . Kenc
AS is the encryption key shared between A

and B, and KMAC
AS is the MAC key shared between A and B. Both keys, Kenc

AS

and KMAC
AS , are independent of each other.

The protocol begins by having A randomly select a k-bit challenge RA and send
it to the B with whom she desires to communicate. Upon receiving the message RA

from A, B also randomly selects a k-bit challenge RB and sends RB together with
RA as a message (RA,RB) to the server S. S, upon receiving the message (RA,RB)

110 S. Wu and Y. Zhu

from B, runs the session key generator to obtain a session key SKAB, which has
not been used before. S then encrypts SKAB with Kenc

AS and Kenc
BS to obtain ci-

phertexts αA and αB, and computes the MAC digests βA and βB of the strings
(A, B, RA, RB , {SKAB}Kenc

AS
) and (A, B, RA, RB, {SKAB}Kenc

BS
) under the keys

KMAC
AS and KMAC

BS respectively. S then sends messages (αA, βA, RB) and (αB, βB)
to A and B respectively in Steps 3a and 3b of the protocol.

Unfortunately, forward-secrecy is not considered in the protocol. Indeed the
revised protocol is not forward secure since any adversary who knows the long-
lived encryption keys Kenc

AS or Kenc
BS certainly can obtain the session key by

decrypting αA and αB respectively. Now we describe the attack in the BPR2000
mode and illustrate that it is wrong to make the restriction that the Test query
be the adversary’s last. It is especially important to understand the security proof
in Section 5.2. We assume a malicious adversary A runs the game simulation
Game as follows. As a preliminary step, A eavesdrops on honest executions
among the client instances U i1

1 and U i2
2 and trusted server instance Sj and

obtains the messages αA, αB. When the session is accepted, A makes a Test
oracle query to the client instance U i1

1 or U i2
2 . We should note that the session

is still fresh at this moment. A continues making a Corrupt oracle query to the
principal and knows its long-lived key Kenc

AS or Kenc
BS and thus the session key

and the bit b involved in the Test oracle. Eventually, A terminates the game
simulation and outputs the value of b correctly. Our attack demonstrates that
the protocol is not forward secure in the BPR2000 model. However, if A was
required to output the guess bit of b immediately after making a Test query,
the attack described above would have not been captured. Therefore, removal of
this restriction is quite important to guarantee security.

5 Our Three-Party Password-Based Protocol

As we mentioned in Section 1, the original key distribution scheme of Raymond
Choo et al. [12] is not in the password-based scenario. In this section, we revised it
to be a password-based authenticated key distribution protocol and provide the
rigorous proof of forward-security for it based on the hardness of the Password-
based Chosen-basis Gap Diffie-Hellman problem. The security proof is in the
random oracle model and the ideal-cipher model. It assumes that the clients
willing to establish a common secret session key share passwords with a common
server and the latter is a trusted server.

5.1 Description

As illustrated on Fig.2. (with an honest execution of the 3PAKD protocol), the
protocol runs between two clients A, B and a server S, and the session-key sk
is a random value chosen by S and distributed to the clients. Client and server
initially share a low-quality password PW , uniformly drawn from the dictionary
D. In Fig.2, by U2

message←−−−−−
send

U1 we mean that user U1 sends message to user

Forward Secure Password-Based Authenticated Key Distribution 111

Public information: G, q, Hi

Secret information: PWA, PWB ∈ G
Client A Server S Client B

x
R←− Zq ,X∗ ← xP − PWA y

R←− Zq ,Y ∗ ← yP − PWA

A
A,X∗
−−−−→
send

S S
B,Y ∗
←−−−−
send

B

t
R←− Zq ,T ← tP

ZAS ← t(X + PWA)
KAS ← H1(IDAS , ZAS)

αA ← EKAS
(sk)

µA ← H2(IDAS , αA, ZAS)
ZBS ← t(Y + PWB)

KBS ← H1(IDBS , ZBS)
αB ← EKBS

(sk)
µB ← H2(IDBS , αB , ZBS)

A
S,αA,T,µA←−−−−−−−−

send
S

S,αB,T,µB−−−−−−−−→
send

B

ZAS ← xT ZBS ← yT

µA
?
= H2(IDAS , αA, ZAS) µB

?
= H2(IDBS, αB , ZBS)

if false, terminates if false, terminates
KAS ← H1(IDAS , ZAS) KBS ← H1(IDBS , ZBS)

skA ← DKAS
(αA) skB ← DKBS

(αB)
νA ← H0(IDAS , ZAS) νB ← H0(IDBS , ZBS)

A
νA−−−−→

send
SA SB

νB←−−−−
send

B

terminates and accepts terminates and accepts

νA
?
= H1(IDAS , ZAS)

if false, terminates

νB
?
= H1(IDBS , ZBS)

if false, terminates
terminates and accepts

Fig. 2. The password-based authenticated key distribution

U2. Hash functions from {0, 1}∗ to {0, 1}l are denoted Hi for i = 0, 1, 2. A block
cipher is denoted (EK , DK) where K is its private key.

The protocol consists of three flows. First, each client chooses an ephemeral
public key by choosing a random element in Zq and raising P to the that power,
encrypts it using his password, and sends it to the server. Upon receiving a
message from each client, the server decrypts these messages to recover each
client’s ephemeral public key, chooses a random index t ∈ Zq, exponentiates
each of the ephemeral public keys to the t-th power as the Diffie-Hellman keys
Z, and at the same time raises P to the that power as his ephemeral public
key. Then the server computes the private keys K for the block cipher via a
hash function H0 using as input ID and Z, and encrypts the session key sk to
be distributed subsequently as the encrypted value α using the block cipher E
with private key K. In the end, the server computes the authenticators µ via a
hash function H1 using as input ID, α and Z. Here, ID represents the string
consisting of the transcript of the conversation among the clients and the server
and the password. More specifically, IDAS is A, B, S, PWA, X∗, T and IDBS is
A, B, S, PWB, Y ∗, T . This is just for simplicity.

In the second round of messages, the server sends to each client his iden-
tity S, the encrypted values α, his ephemeral public key T and the authenti-
cators µ. Upon receiving a message from the server, each client computes the

112 S. Wu and Y. Zhu

Diffie-Hellman key Z, and the authenticators µ. Then he checks the authenti-
cator received is valid. If it is invalid, he simply abolishes and terminates the
execution of the protocol. Otherwise, he proceeds to compute the private keys
K for the block cipher and to recover the session key sk. In addition, he also
computes his authenticator ν via a hash function H2.

In the third round of messages, the client sends his authenticator ν to the
server S and accepts and terminates the execution of the protocol. Upon receiv-
ing the authenticator from the two clients, the server S checks the authenticators
received —νA andνB— are valid. If both of them are valid, accepts and termi-
nates the execution of the protocol.

Note 2. One should remark that the last round of messages is necessarily in-
cluded so that the servers can detect online dictionary attacks as pointed out
in [21]. For 3-party PAKE protocols, only adding mutual authentication be-
tween two communicating clients in the end can not enhance those protocols
to be resistant to undetectable on-line dictionary attacks. Unlike 2-party proto-
cols, malicious attacker can play the legal role of client users and interacts with
trusted servers to guess the value of passwords.

Our protocol is quite efficient, only requiring a small amount of computation
by each user. In what concerns block cipher computations, hash computations,
each client only has to perform 1 block cipher computation, and 3 hash com-
putations; and the server only has to perform 2 block cipher computations, and
6 hash computations. All these can be done efficiently and their computational
complexity can be neglected. The most expensive part of our protocol is the
number of scalar multiplication, which entails the highest computational com-
plexity. Since each client needs to perform 2 scalar multiplications and the server
3 scalar multiplications, our protocol has a per-user computational cost that is
comparable to that of the underlying two-party encrypted key exchange. When
compared to previous solution in [6], our protocol requires at least one less scalar
multiplication for each participant and thus certainly more efficient.

5.2 Security

As the following theorem states, our 3PAKD is a forward-secure 3-party
password-based key distribution protocol as long as the Password-based Chosen-
basis Gap Diffie-Hellman problem is hard in G . The specification of this protocol
is found on Fig.2.

Theorem 1. Let D be a uniformly distributed dictionary of size |D|. Let P
describe the 3-party password-based authenticated key distribution protocol asso-
ciated with these primitives as defined in Fig.2. Then,

Advake−fs
P (A) ≤ (2qp+qs)2

q + 2q2
E

q + q2
h

2l + 2qs

|D| + 4qs+2qp

2l + 4Succpcgdh
P,G,D(qh, t + 2τ),

where qs denotes the number of active interactions with the parties (Send-
queries); qp denotes the number of passive eavesdroppings (Execute-queries);

Forward Secure Password-Based Authenticated Key Distribution 113

qh denotes the number of hash queries to Hi; qE denotes the number of encryp-
tion/decryption queries; and τ denotes the computational time for an exponen-
tiation in G.

Due to the limitation of the paper length, the complete proof is to be included
in the full version of this paper.

Note 3. The ideal-cipher model is very strong (even stronger than the ideal-
hash model) and yet there are natural and apparently-good ways to instantiate
an ideal cipher for use in practical protocols (see [22]). Working in this model
does not render trivial the goals that this paper is interested in, and it helps
make for protocols that achieve provably forward security. We can only prove
the proposed scheme is sematic secure but forward secure if we do not assume
ideal cipher model. There seems to be some collisions with some technique that
is used in our proof when we attempts to reduce an adversary against forward
security of the protocol to an adversary against the classical security definition
of the encryption scheme.

Rationale for the scheme. At first thought, you may wonder how we can make
the original protocol forward-secure by adding password-authentication services.
Now let us reconsider the attack in the section 4. In that case, the adversary
A that eavesdrops on honest executions and then corrupts any player of the
target session can compute the ephemeral public keys but should not be able to
compute the Diffie-Hellman key and thus the private key and the session key.
Therefore,we can prove our protocol is forward-secure in the BRP2000 model.

6 Conclusion

We have shown Raymond Choo’s protocol is not forward-secure in the BPR2000
model. Following that, we have presented a 3-party password-based authenti-
cated key distribution protocol by adding password-authenti- cation services to
Raymond Choo’s protocol. Furthermore, we have proved the forward-security
for our protocol under the Password-based Chosen-basis Gap Diffie-Hellman as-
sumption in the BPR2000 model. When compared with previous solutions in the
password-based scenario, our protocol is efficient. The costs for each participant
of the new 3-party protocol are comparable to those of a 2-party encrypted key
exchange protocol.

References

1. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: Proc. 1992 IEEE Computer Society Symp.
on Research in security and Privacy, May 1992, pp. 72–84 (1992)

2. Byun, J.W., Jeong, I.R., Lee, D.H., Park, C.-S.: Password-authenticated key ex-
change between clients with different passwords. In: Deng, R.H., Qing, S., Bao, F.,
Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 134–146. Springer, Heidelberg
(2002)

114 S. Wu and Y. Zhu

3. Lin, C.-L., Sun, H.-M., Hwang, T.: Three-party encrypted key exchange: Attacks
and a solution. ACM SIGOPS Operating Systems Review 34(4), 12–20 (2000)

4. Wang, S., Wang, J., Xu, M.: Weaknesses of a password-authenticated key exchange
protocol between clients with different passwords. In: Jakobsson, M., Yung, M.,
Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 414–425. Springer, Heidelberg
(2004)

5. Yeh, H.-T., Sun, H.-M., Hwang, T.: Efficient three-party authentication and key
agreement protocols resistant to password guessing attacks. Journal of Information
Science and Engineering 19(6), 1059–1070 (2003)

6. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

7. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with
Applications to Password-based Authentication. In: Patrick, S., Yung, A.
(eds.) FC 2005. LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005),
http://www.di.ens.fr/∼pointche/pub.php

8. Wen, H.-A., Lee, T.-F., Hwang, T.: Provably secure three-party password-based
authenticated key exchange protocol using Weil pairing. IEE Proceedings — Com-
munications 152(2), 138–143 (2005)

9. Nam, J., Kim, S., Won, D.: Security Weakness in a Three-Party Password-Based
Key Exchange Protocol Using Weil Pairing. In: Cryptology ePrint Archive, Report
(2005), http://eprint.iacr.org/2005/269.ps

10. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

11. Bellare, M., Rogaway, P.: Provably Secure Session Key Distribution: The Three
Party Case. In: 27th ACM Symposium on the Theory of Computing, pp. 57–66.
ACM Press, New York (1995)

12. Choo, K.-K.R., Boyd, C., Hitchcock, Y., Maitland, G.: On Session Identifiers in
Provably Secure Protocols—The Bellare-Rogaway Three-Party Key Distribution
Protocol Revisited. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352,
pp. 352–367. Springer, Heidelberg (2005)

13. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based Group
Key Exchange in a Constant Number of Rounds. In: Yung, M., Dodis, Y., Kiayias,
A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg
(2006)

14. Bellare, M., Rogaway, P.: Optimal asymmetric encryption: How to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995), http://www-cse.ucsd.edu/users/mihir

15. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
Against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

16. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004)

17. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

18. Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for
the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992. Springer, Heidelberg (2001)

http://www.di.ens.fr/~pointche/pub.php
http://eprint.iacr.org/2005/269.ps
http://www-cse.ucsd.edu/users/mihir

Forward Secure Password-Based Authenticated Key Distribution 115

19. Abdalla, M., Pointcheval, D.: Simple Password-Based Encrypted Key Exchange
Protocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208.
Springer, Heidelberg (2005)

20. Abdalla, M., Bresson, E., Chevassut, O., Möller, B., Pointcheval, D.: Provably
Secure Password-Based Authentication in TLS. In: Proc. of at AsiaCCS 2006,
Taipei, Taiwan, March 21-24 (2006)

21. Ding, Y., Horster, P.: Undetectable On-line Password Guessing Attacks. ACM
Operating Systems Review 29(4), 77–86 (1995)

22. Black, J., Rogaway, P.: Ciphers with Arbitrary Finite Domains (manuscript, 2000)

Key Management Using Certificateless Public

Key Cryptography in Ad Hoc Networks

Fagen Li1,2,3, Masaaki Shirase1, and Tsuyoshi Takagi1

1 School of Systems Information Science,
Future University-Hakodate, Hakodate 041-8655, Japan

2 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 610054, China

3 Key Laboratory of Computer Networks and Information Security,
Xidian University, Xi’an 710071, China

fagenli@uestc.edu.cn

Abstract. As various applications of wireless ad hoc network have been
proposed, security has become one of the big research challenges and is
receiving increasing attention. In this paper, we propose a distributed key
management approach by using the recently developed concepts of certifi-
cateless public key cryptography and threshold secret sharing schemes.
Without any assumption of prefixed trust relationship between nodes,
the ad hoc network works in a self-organizing way to provide the key
generation and key management services using threshold secret sharing
schemes, which effectively solves the problem of single point of failure.
Certificateless public key cryptography is applied here not only to elim-
inate the need for certificates, but also to retain the desirable properties
of identity-based key management approaches without the inherent key
escrow problem.

Keywords: Ad hoc network, network security, key management, cer-
tificateless public key cryptography.

1 Introduction

An ad hoc network is a collection of autonomous nodes that communicate with
each other by forming a multi-hop wireless network. The property of not re-
lying on the support from any fixed infrastructure makes it useful for a wide
range of applications, such as instant consultation between mobile users in the
battlefields, emergency, and disaster situations, where geographical or terrestrial
constraints demand totally distributed networks. While ad hoc network provides
a great flexibility for establishing communications, it also brings a lot of research
challenges. One of the important issues is the security due to all the characteris-
tics of these networks, such as the vulnerability of the wireless links, the limited
physical protection of each node and the dynamically changing topology. Key
management service is a crucial security issue because it is the essential assump-
tion of many other security services. For instance, many secure routing protocols,

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 116–126, 2008.
c© IFIP International Federation for Information Processing 2008

Key Management Using Certificateless Public Key Cryptography 117

such as ARAN [1] and SRP [2], assume that a pair of private and public keys
and a certificate signed by a trusted third party have been assigned to nodes.

Because ad hoc networks are highly vulnerable to various security threats due
to its inherent characteristics, such as open medium, absence of fixed central
structure, dynamically changing topology and constrained resource, traditional
key management approaches based on public key infrastructure (PKI) is not
directly applicable to ad hoc networks. Designing an efficient key management
solution should satisfy following characteristics:

Lightweight: Solutions must minimize the amount of computation and commu-
nication required to ensure the security services to accommodate the limited
energy and computational resources of nodes.

Decentralized: Like ad hoc networks themselves, attempts to secure them
must be ad hoc way: they must establish security without a priori knowledge
to centralized or persistent entities. Instead, security solutions must utilize
the cooperation of all trustworthy nodes in the network.

Reactive: Ad hoc networks are dynamic: nodes may enter and leave the network
spontaneously and unannounced. Security solutions must react to changes in
network state; they must seek to detect compromises and vulnerabilities.

Fault-Tolerant: Wireless transfer mediums are known to be unreliable; nodes
are likely to leave or be compromised without warning. The security solutions
should be designed with such faults in mind; they must not rely on message
delivery or ordering.

Current research works in key management are mainly based on traditional
PKI [3,4,5,6] and identity-based public key cryptography (ID-PKC) [7,8,9].
These approaches based on traditional PKI use a partially distributed or a fully
distributed certificate authority (CA) to issue and manage public key certificates.
However, the resource-constrained ad hoc networks might be unable to afford
the rather complicated certificate management, including revocation, storage and
distribution, and the computational costs of certificate verification. ID-PKC get
rid of the public key certificates by allowing allowing the user’s public key to
be any binary string, such as an email address, IP address that can identify the
user. ID-PKC have an advantage in the aspect of the key management compared
with the traditional PKI. However, ID-PKC needs a trusted private key gener-
ator (PKG) which generates the private keys of the entities using their public
keys and a master secret key. Therefore, the dependence on the PKG who know
all user’s private keys inevitably causes the key escrow problem to the ID-PKC
systems. For example, the PKG can decrypt any ciphertext in an identity-based
public key encryption scheme. Equally problematical, the PKG could forge any
entity’s signatures in an identity-based signature scheme.

In this paper, we propose a novel key management approach using certificate-
less public key cryptography (CL-PKC) [10]. The CL-PKC does not require the
use of certificates and yet does not have the built-in key escrow feature of ID-
PKC. It is a model for the use of public key cryptography that is intermediate
between traditional PKI and ID-PKC. A CL-PKC system still makes use of a
trusted third party which is called the key generating center (KGC). By way of

118 F. Li, M. Shirase, and T. Takagi

contrast to the PKG in ID-PKC, the KGC does not have access to the user’s
private key. Instead, the KGC supplies a user with a partial private key that
the KGC computes from the user’s identity and a master key. The user then
combines the partial private key with some secret information to generate the
actual private key. The system is not identity-based, because the public key is
no longer computable from a user identity. When Alice wants to send a message
to Bob in a CL-PKC system, she must obtain Bob’s public key. However, no
authentication of Bob’s public key is necessary and no certificate is required.

The rest of this paper is organized as follows. In Section 2, we study the
related work in the literature. Some preliminary works are given in Section 3. Our
proposed key management approach is detailed described in Section 4. Finally,
the conclusions are given in Section 5.

2 Related Work

In [3], Zhou and Haas focused on how to establish a secure key management
service in an ad hoc networking environment. They proposed to apply the secret
sharing technique [11] to distribute the CA’s private key among a pre-selected
subset of nodes, called servers. Then any combination of t servers can jointly
issue public key certificates to mobile nodes. The focus of their work is to max-
imize the security of the shared secret in the presence of possible compromises
of the secret share holders. It assumes a small group of servers with rich connec-
tivity. Therefore, it is not suitable for purely ad hoc environments. [4] and [5]
make an extension of [3] and provide a fully distributed CA scheme. In other
words, each node holds a secret share, and k or more nodes in a local neigh-
borhood jointly provide complete services. This solution has a good availability
since all nodes are part of the CA service, it is easier for a node to locate k
neighbor nodes and request the CA service. In [6], Hubaux et al. proposed a
self-organized certificate chaining key management approach, which has similar-
ity with PGP “web of trust” concept. Unlike the above publications, it does not
require a trusted authority or any special nodes; instead, each node issues its
own certificates to other nodes. Key authentication is performed via chains of
certificates. Certificate chaining fits naturally with ad hoc networks where there
is no physical infrastructure, relying on each mobile node to issue certificates
to other nodes at their own discretion. However, certificate chaining requires a
warm-up period to populate the certification graph, which completely depends
on the individual node’s behavior and mobility. Additionally, the validity of a
certificate chain depends on the trustworthiness of all the mobile nodes in the
chain, which may not be easy to ensure in open networks.

In [7], Khalili et al. provide a key distribution mechanism combining the use of
ID-PKC and threshold cryptography. Their scheme avoids the need for users to
generate their own public keys and distribute these keys throughout the network,
since the user’s identity acts as her public key. Besides that, users only need to
propagate their identities instead of the certificates. This can lead to huge savings
in bandwidth. However, the usage of ID-PKC instead of certificates also results

Key Management Using Certificateless Public Key Cryptography 119

in a few weaknesses. One major weakness is that the key escrow problem since
distributed PKG know all user’s private keys. The compromise of the PKG’s
master key could be disastrous in an ID-PKC system, and usually more severe
than the compromise of a CA’s signing key in a traditional public key cryptog-
raphy. For these reasons, it seems that the use of ID-PKC may be restricted to
small, closed groups or to applications with limited security requirements.

3 Preliminaries

3.1 Certificateless Public Key Cryptography

The idea of CL-PKC is proposed by Al-Riyami and Peterson [10] with the origi-
nal motivation of eliminating the inherent key escrow problem of ID-PKC. Since
then, different encryption and signature schemes were suggested [12,13,14]. In
CL-PKC, the KGC supplies an user with a partial secret key which the KGC
computes from the user’s identity and a master key, and then the user combines
its partial secret key and the KGC’s public parameters with some secret infor-
mation to generate its actual secret key and public key respectively. In this way,
an user’s secret key is not available to the KGC.

In more detail, an certificateless public key encryption scheme consists of the
following algorithms:

– Setup: This algorithm takes security parameter k and returns the system
parameters params and master-key. The system parameters includes a de-
scription of the message space M and ciphertext space C. Usually, this al-
gorithm is run by the KGC. The KGC publishes system parameters params
and keeps the master-key secret.

– Partial-Private-Key-Extract: This algorithm takes params, master-key
and an identity for entity A, IDA ∈ {0, 1}∗, as input. It returns a partial
private key DA. Usually this algorithm is run by the KGC and its output is
transported to entity A over a confidential and authentic channel.

– Set-Secret-Value: This algorithm takes as inputs params and an entity
A’s identity IDA as inputs and outputs A’s secret value xA.

– Set-Private-Key: This algorithm takes params, an entity A’s partial pri-
vate key DA and A’s secret value xA as input. The value xA is used to
transform DA into the (full) private key SA. The algorithm returns SA.

– Set-Public-Key: This algorithm takes params and entity A’s secret value
xA as input and from these constructs the public key PA for entity A.

– Encrypt: This algorithm takes as inputs params, a message m ∈ M, and the
public key PA and identity IDA of an entity A. It returns either a ciphertext
c ∈ C or the null symbol ⊥ indicating an encryption failure.

– Decrypt: This algorithm takes as inputs params, c ∈ C, and a private key
SA. It returns a message m ∈ M or a message ⊥ indicating a decryption
failure.

120 F. Li, M. Shirase, and T. Takagi

3.2 Threshold Secret Sharing

Secret sharing allows a secret to be shared among a group of users (also called
shareholders) in such a way that no single user can deduce the secret from his
share alone. To construct the secret, one needs to combine a sufficient number
of shares. (k, n) threshold secret sharing represents that the secret is distributed
to n shareholders, and any k or more users can reconstruct the secret from their
shares, but k − 1 or fewer users cannot get any information about the secret.
Here, k is the threshold parameter such that 1 ≤ k ≤ n. The first threshold
secret sharing scheme was proposed by Shamir [11] in 1979, which is based on
polynomial interpolation. To distribute a secret S among n users, a trusted
authority chooses a large prime q, and randomly selects a polynomial

f(x) = S + a1x + · · · + ak−1x
k−1(mod q),

where a1, . . . ak−1 ∈ Zq. The trusted authority computes each user’s share by
Si = f(i) and securely sends the share Si to user i. Then any k users can
reconstruct the secret by computing

S =
k∑

i=1

SiLi(mod q),

where

Li =
k∏

j=1,j
=i

−j/(i − j)(mod q).

There are two weaknesses in the Shamir secret sharing scheme. On the one hand,
his scheme does not detect the trusted authority distributes erroneous shares to
some users and does not detect some compromised users provide false shares; on
the other hand, his scheme needs a trusted authority to distribute a secret to
users. To detect incorrect shares, a few verifiable secret sharing (VSS) schemes
was proposed in [15,16,17]. A VSS scheme generates extra public information
for each share using a one-way function. The public information can testify the
correctness of the corresponding shares without disclosing them. To solve the
second weakness of the Shamir secret sharing scheme, Pedersen [19] proposed
a secret sharing scheme without having a trusted authority, which selects the
secret and distributes it to users. In stead, these users choose the secret and
distribute it among themselves.

In the secret sharing schemes described above, the secret is protected by
distributing it among several users. However, given sufficiently long time an
attacker could compromise k users and obtain their shares, thereby allowing
him to reconstruct the secret. To defend against such attackers, proactive secret
sharing schemes [18] use share refreshing, which enables users to compute new
shares from old ones in collaboration without disclosing the shared secret to
any user. The new shares constitute a new (k, n) sharing of the secret. After
refreshing, users remove the old shares and only keep the new ones. Because the
new shares are independent of the old ones, the adversary cannot combine old

Key Management Using Certificateless Public Key Cryptography 121

shares with new shares to recover the secret. Thus, the attacker is challenged to
compromise k users between periodic refreshing.

4 Proposed Security Solution

In this section, we first describe our assumptions about the network, and then
give an overview of our key management approach using the threshold secret
sharing schemes and certificateless public key cryptography. Finally, we describe
our approach in detail.

4.1 Assumptions

Our key management approach does not rely on any assumption of underlying
key management subsystem. That is, there is no trusted authority to generate
and distribute the public/private keys and there is no pre-built trust association
between nodes in the network. All the keys used are generated and maintained
in a self-organizing way within the network.

We assume that each mobile node carries an IP address or an identity, which is
unique and unchanged during its lifetime in the ad hoc network. The IP address
or identity can be obtained through some dynamic address allocation and auto-
configuration, only if the address is selected without any conflict with other
nodes in the network. We also assume that each mobile node has a mechanism
to discover its one-hop neighborhood and to get the identities of other nodes in
the network.

4.2 Proposed Security Scheme

4.2.1 Overview
Consider that an ad hoc network has n nodes in the initial phase. The network
has a public/private key pair, called master key 〈PK, SK〉, which is used to
provide key generation service to all the nodes in the network. The master key
pair is generated in such a manner that the master public key PK is well known
to all the nodes in the network, and the master private key SK is shared by all
the nodes in a (k, n) threshold fashion. Any k or more nodes can reconstruct
the master private key SK from their shares, but k − 1 or fewer nodes cannot
get any information about the SK. Before utilizing any network service, each
node will have to obtain its partial private key corresponding to its identity and
distribute its public key throughout the network. This partial private key can
be computed by obtaining k shares of its key from the original nodes in the
network. Note that the distributed key generation service in a (k, n) threshold
fashion requires an adversary to corrupt at least k nodes in order to obtain a
user’s partial private key. Furthermore, honest nodes need only contact any k
nodes in order to obtain their own partial private keys, thus making the protocol
resilient to temporary loss of connectivity with other nodes in the network.

122 F. Li, M. Shirase, and T. Takagi

Our solution has the following good characteristics: (i) It does not need a
trusted authority to select and to distribute the master private key to nodes.
Nodes choose the secret and distributes it among themselves. (ii) It does not need
public key certificates, saving network bandwidth and computational power of
nodes. (iii) The using of the CL-PKC make our solution eliminate the key escrow
problem of the ID-PKC key management approaches [7,8,9].

In the following, we describe the basic operations of our key management
approach: master public/private key generation, partial private key generation
service, key agreement, new master private key share creation, and master private
key share refreshing of nodes.

4.2.2 Master Key Generation
Our master key generation mechanism uses the Pedersen’s threshold secret shar-
ing scheme without a trusted authority [19]. Therefore, our approach does not
need the support of the trusted authority to compute a master private key,
separate it into multiple shares and then distribute the shares to shareholders.
Instead, the master key pair is computed collaboratively by the initial network
nodes. The detailed scheme is as follows.

1. Each node Ci randomly chooses a secret xi and a polynomial fi(x) over Zq

of degree k − 1 such that fi(0) = xi. Let

fi(x) = ai0 + ai1x + · · · + ai,k−1x
k−1,

where ai0 = xi.
2. Each node Ci computes wij = gaij for j = 0, . . . , k − 1 and broadcasts

{wij}j=0,...,k−1.
3. When everybody has sent these k − 1 values, Ci sends sij = fi(j) securely

to Cj for j = 1, . . . , n (in particular Ci keeps sii).
4. Ci verifies the correctness of sji from Cj by checking

gsji =
k−1∏
l=0

wil

jl.

If this fails, Ci broadcasts that an error has been found, publishes sji and
then stops.

5. Ci can compute its share of master private key as Si =
∑n

j=1 sji. That is,
the master private key share of node Ci is combined by the subshares from
all the nodes, and each of them contributes one piece of that information.

6. Any coalition of k shareholders can jointly recover the secret as in basic
secret sharing by computing

∑k
i=1 SiLi(mod q), where

Li =
k∏

l=1,l
=i

−l/(i − l)(mod q).

Key Management Using Certificateless Public Key Cryptography 123

It is easy to see that the jointly generated master private key

SK =
n∑

i=1

xi =
n∑

i=1

fi(0).

Then, the master public key can be computed as

PK = SKP =
k∑

i=1

SiLiP,

where P is a common parameter used by the certificateless encryption
scheme [10].

4.2.3 Distributed Partial Private Key Generation Service
Suppose that an entity A with identity IDA needs to obtain its public key and
corresponding private key. A choose a secret value xA and set its public key as
PA = 〈XA, YA〉, where XA = xAP and YA = xAPK. Then, A make its public
key PA is well known to all the nodes in the network. To obtain the private key,
A contacts at least k neighbor nodes, present the identity and request partial
private key generation service. These nodes that hold the master private key
share can be the KGC service nodes. In our scheme, all the network nodes share
the master private key, thus each of them can be the KGC service node. Each
of the k KGC service nodes generates a secret share of the partial private key
DA and sends to A. To make sure the generated shares are securely transmitted,
each of the KGC service nodes sends encrypted share to the node A using A’s
public key PA. The process of generation of a share of the partial private key DA

can be represented by DAi = SiH1(IDA), where Si(i = 1, . . . , k) is the share
of the master private key of the KGC node, H1 is a hash function used by the
certificateless encryption scheme [10], and DAi is the generated partial private
key share for the node A. A can verify the correctness of DAi by checking

ê(DAi , P) = ê(H1(IDA), Wi),

where ê is a bilinear map defined in [10] and Wi = SiP is the i-th KGC’s share
commitments. If this fails, A broadcasts that an error has been found, publishes
DAi and then stops. After obtaining k valid partial private key share, A calculate
the complete partial private key as DA = DAiLi, where

Li =
k∏

l=1,l
=i

−l/(i − l)(mod q).

Then, A can sets its (full) private key SA = xADA.

124 F. Li, M. Shirase, and T. Takagi

4.2.4 Key Agreement
Suppose that entity A has its (full) private key SA and corresponding public key
PA = 〈XA, YA〉. Entity B has its (full) private key SB and corresponding public
key PB = 〈XB, YB〉. If they want to set up a session key, A chooses a random
values a ∈ Z∗

q and sends TA = aP to B. B chooses a random values b ∈ Z∗
q

and sends TB = bP to A. After the above messages are exchanged, both entities
check the validity of each other’s public keys (A checks ê(XB, PK) = ê(YB , P)
and B checks ê(XA, PK) = ê(YA, P)). Then A computes

KA = ê(H1(IDB), YB)aê(SA, TB)

and B computes
KB = ê(H1(IDA), YA)bê(SB, TA).

It is easy to see that K = KA = KB is a shared session key between A and B.

4.2.5 New Master Private Key Share Creation
When a new node Cp joins a network, it presents its identity, public key, and some
other required physical proof to k neighbor nodes and requests the master public
key and his share of the master private key. Each node in the coalition verifies the
validity of the identity of the new node Cp. If the verification succeeds, the Cp’s
private key can be generated using the above method. To initialize the share of
master private key for the requesting node, each coalition node Ci generates the
partial share sip = SiLi(p) for node Cp. Here, Li(p) is the Lagrange coefficient.
It encrypts the partial share using Cp’s public key and sends it to Cp. Node Cp

obtains its new share by adding the partial shares as

Sp =
k∑

j=1

sp,j .

Note that the partial shares may be shuffled before being sent to the joining node
to protect the secrecy of the coalition nodes’ secret shares [4]. After obtaining
the share of the master private key, the new joining node is available to provide
KGC service to other joining nodes.

4.2.6 Master Private Key Share Refreshing of Nodes
To protect against attackers that might compromise k or more nodes if there
is enough time, a proactive secret sharing scheme is used to enable nodes of a
region to compute new shares from old ones in collaboration without disclosing
the master private key of the region. It relies on the homomorphic property.
We notice that it is unnecessary to require all the nodes involved in the master
private key share refreshing process. Instead, the task can be done by only k
nodes, since we assume that, between any consecutive secret share updates, the
number of adversaries who hold secret shares originated from the same secret
key is less than k. To detect those incorrect subshares, the VSS scheme [15,16,17]
is employed.

Key Management Using Certificateless Public Key Cryptography 125

Details are shown as follows. To renew the master private key shares of all
the n nodes in a region, k nodes are chosen from this region. Each node Ci(1 ≤
i ≤ k) randomly generates (Si1, Si2, . . . , Sin), a (k, n) sharing of 0. Then, every
subshares Sij(1 ≤ j ≤ n) is distributed to node Cj . When node Cj gets the
subshares S1j , S2j , . . . , Skj , it can compute a new share from these subshares and
its old share (S′

j = Sj+
∑k

i=1 Sij). The new shares constitute a new (k, n) sharing
of the master private key. After refreshing, nodes remove the old shares and use
the new ones to provide the partial private key generation service. Because the
new shares are independent of the old ones, the adversary cannot combine old
shares with new shares to recover the master private key. Thus, the adversary is
challenged to compromise k nodes in the same region between periodic refreshing.

5 Conclusions

Ad hoc networks are new paradigm in networking technologies. Key management
is one of the most crucial technologies for security of ad hoc networks. This
paper presents a new approach for key management using certificateless public
key cryptography and threshold secret sharing schemes. Certificateless public
key cryptography is applied here not only to eliminate the need for certificates,
but also to retain the desirable properties of identity-based key management
approaches without the inherent key escrow problem. In addition, we completely
avoid a centralized certification authority or trusted third party to distribute the
public keys and the certificates, thus enhance the tolerance of the network to
compromised nodes and also efficiently save network bandwidth.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and
suggestions. This work is supported by the National Natural Science Foundation
of China (60673075), the National High Technology Research and Development
Program of China (2006AA01Z428), the Key Laboratory of Computer Networks
and Information Security of Xidian University (2008CNIS-02), and Youth Sci-
ence and Technology Foundation of UESTC. Fagen Li is supported by the JSPS
postdoctoral fellowship for research in Japan.

References

1. Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: A secure
routing protocol for ad hoc networks. In: Proceedings of 10th IEEE International
Conference on Network Protocols, Paris, France, pp. 78–87 (2002)

2. Papadimitratos, P., Haas, Z.J.: Secure routing for mobile ad hoc networks. In:
Proceedings of SCS Communication Networks and Distributed Systems Modeling
and Simulation Conference (CNDS 2002), San Antonio, TX, January 27–31 (2002)

3. Zhou, L., Haas, Z.J.: Securing ad hoc networks. IEEE Network 13(6), 24–30 (1999)

126 F. Li, M. Shirase, and T. Takagi

4. Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing robust and ubiquitous
security support for mobile ad hoc networks. In: Proceedings of 2001 International
Conference on Network Protocols, Riverside, USA, pp. 251–260 (2001)

5. Luo, H., Kong, J., Zerfos, P., Lu, S., Zhang, L.: Self-securing ad hoc wireless net-
works. In: Proceedings of Seventh IEEE Symposium on Computers and Commu-
nications, Taormina-Giardini Naxos, Italy, pp. 567–574 (2002)

6. Hubaux, J.P., Buttyan, L., Capkun, S.: Self-organized public-key management for
mobile ad hoc networks. IEEE Transactions on Mobile Computing 2(1), 52–64
(2003)

7. Khalili, A., Katz, J., Arbaugh, W.A.: Toward secure key distribution in truly ad
hoc networks. In: Proceedings of 2003 Symposium on Applications and the Internet
Workshops, Orlando, FL, USA, pp. 342–364 (2003)

8. Deng, H., Mukherjee, A., Agrawal, D.: Threshold and identity-based key manage-
ment and authentication for wireless ad hoc networks. In: Proceedings of Interna-
tional Conference on Information Technology: Coding and Computing, Las Vegas,
NV, USA, pp. 107–111 (2004)

9. Deng, H., Agrawal, D.: TIDS: threshold and identity-based security scheme for
wireless ad hoc networks. Ad Hoc Networks 2(3), 291–307 (2004)

10. Al-Riyami, S.S., Peterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–474. Springer, Heidelberg
(2003)

11. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

12. Yum, D.H., Lee, P.J.: Generic construction of certificateless encryption. In: Laganá,
A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA
2004. LNCS, vol. 3043, pp. 802–811. Springer, Heidelberg (2004)

13. Yum, D.H., Lee, P.J.: Generic construction of certificateless signature. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 200–
211. Springer, Heidelberg (2004)

14. Al-Riyami, S.S., Peterson, K.G.: CBE from CL-PKE: a generic construction and
efficient schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398–415.
Springer, Heidelberg (2005)

15. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: Proceedings of 26th IEEE
Symposium on Foundations of Computer Science, Portland, OR, USA, pp. 151–
160 (1985)

16. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
Proceedings of 28th IEEE Symposium on Foundations of Computer Science, Los
Angeles, CA, USA, pp. 427–437 (1987)

17. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

18. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 457–469. Springer, Heidelberg (1995)

19. Pedersen, T.: A threshold cryptosystem without a trusted party. In: Davies, D.W.
(ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 127–137, 2008.
© IFIP International Federation for Information Processing 2008

A Data Storage Mechanism for P2P VoD Based on
Multi-channel Overlay*

Xiaofei Liao, Hao Wang, Song Wu, and Hai Jin

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

{xfliao,wusong,hjin}@hust.edu.cn

Abstract. It is a big challenge to provide Video-on-Demand streaming services
over Internet in a scalable way. Currently, many researchers use a single chan-
nel overlay to implement the scalability of on-demand streaming services.
However, in a real application environment, various channels in a P2P VOD
system have different popularities, which probably cause the imbalance of data
storage-capability of the whole system. It results in a problem that a mass of
unpopular channels’ caching capability can not be used to satisfy the data re-
quirements of the whole system. In order to solve the problem, this paper pro-
poses a new data-storage mechanism, which constructs a multi-channel overlay
to optimize the whole system’s caching-capability and greatly improves un-
popular channel’s caching efficiency. The experimental results show that this
mechanism can achieve significant effects.

1 Introduction

When designing a P2P streaming media system, the basic principle is to organize the
nodes watching or serving the same program as a single channel overlay, no matter it
is tree [1, 2, 3, 4] or mesh topology [5, 6, 7, 8]. Nodes in a single channel overlay
store media data to construct P2P network storage. Nodes request and gain media
from neighbor peers while they are playing media, in order to reduce the pressure of
source server. When the scale of a single channel overlay grows up to a certain size,
the P2P network can store most of data to meet all the requirements, minimize direct
data requests to the source server.

Based on the analysis of existing P2P Video-on-Demand system, called GridCast
[9], the study found that different channels’ network scale meet the Zipf distribution.
Some popular channels can assemble a large amount of nodes, and P2P network’s
data storage capability can meet the data request. But most P2P network channels’

* This work was supported in part by China National Natural Science Foundation (NSFC)

grants No.60703050, No.60673174, No.60433040, No.60731160630, the Research Fund for
the Doctoral Program of Higher Education grants No.20050487040, Wuhan Chengguang
Plan with No.200850731350 and Program for New Century Excellent Talents in University
under Grant NCET-07-0334.

128 X. Liao et al.

sizes are small, the single channel overlay only store part of the channel’s media, this
channel still causes a lot of data sources requests. To effectively improve the load
capacity of the entire P2P VoD system, to solve the insufficient data storage capabil-
ity problem of most unpopular P2P network channels, is particularly important to
reduce the pressure on the data source server.

Based on the above analysis, this paper presents a data storage mechanism based on
multi-channel overlay, improving unpopular channels’ data storage when popular
channels’ nodes joining unpopular ones. The simulation result proves that this ap-
proach can greatly improve the system load capacity.

The rest of paper is organized as follows. Section 2 describes the system architec-
ture. In section 3, how to organize the multi-channel overlay is presented. Section 4
gives the experiments and results. In section 5, related works are described. Section 6
concludes this paper.

2 System Overview

Just like other P2P content distribution systems, GridCast uses a set of source servers
to release media files to participating peers, who asynchronously are playing the files
while exchanging data among themselves. Unlike file downloading and live streaming,
a node is more selfish in the sense that it only cares about contents after its current
playing position, which is often different from other nodes. Most of the time, a node’s
downloading targets are those whose playback positions are ahead, and it can only help
those that are behind. However, a node can also change its playing position at any
time. These characteristics make a VoD system harder to optimize, rendering globally
optimal strategies such as rarest first employed in BitTorrent [14] inapplicable.

Fig. 1. Architecture overview

To cope with the above problem, the node of GridCast maintains a routing table,
which consists of nodes placed in a set of concentric rings with power law distribution
distanced using relative playback positions, and uses gossips to keep the routing table
up-to-date. This architecture allows a node to find a new group of position-close part-
ners in logarithmic steps after it seeks to a new playing position. The tracker can be
considered as a stationary node whose playback position stays fixed at time zero.

 A Data Storage Mechanism for P2P VoD Based on Multi-channel Overlay 129

The tracker’s job is to keep track of its membership view, which bootstraps any new
nodes.

3 Multi-channel Overlay

3.1 Network Scale Distribution

In P2P VoD System (Gridcast [9]) based on single channel overlay, each channel’s
data storage consists of two parts: the P2P network data storage and data server. After
one VoD node joins P2P network, it connects with other P2P nodes which are watch-
ing the same program to construct a single channel overlay, and exchanges stored data
information using Gossip [11] protocol. When the node requests media data, it checks
if other nodes in the single channel have stored the data first. If so, it directs request
data from the P2P network, and stores data in local cache. Assume that the total media
playing time is T, each node stores data with length of time t in local cache. A single
channel overlay at least needs T/t nodes to completely stores media data.

The popularities of different programs meet the Zipf distribution [12]. Assuming
that the system has n program channels, the probability of user options listed S1, S2,…
Sn, its choice of probability pi= P{X=Si} (i = 1, 2,… n), {p1, p2,…. pn} with Zipf
distribution,

n

1 1
j 1

1 1
()

i jiP θ θ− −
=

= ∑ (θ is the Zipf constant). The collected log data of GridCast

shows that θ closes to 0.25. During normal system runtime, the system distributed
more than 50% of overall nodes in 20% of the most popular channels, but most chan-
nels’ network scale fail to achieve stable size. In popular channels, because of the
large scale P2P networks, program data stored in the P2P networks are more than data
needs. Correspondingly, there are fewer nodes in the unpopular channels; the data
storage capability is unable to meet the data needs. There still are a lot of data re-
quests to the data source server.

3.2 Data Storage Status Maintenance

GridCast system uses tracker server to maintain the data storage status of whole P2P
network. It keeps track on all of the nodes currently joined GridCast system. A node
has been represented as an item that holds nodes GUID, address, port, bandwidth,
playing time and so on. In order to maintain the information of all nodes, the tracker
needs to update the playing position of each node. Each node will send one UDP
message to synchronize its buffer status in every minute.

Tracker server uses a hash table to index one channel’s storage status. The length of
this hash table is the duration of this channel. Every element of this hash table is a
double-link list and it maintains information of each node who has stored the corre-
sponding media data. Figure 2 gives a sketch map of the tracker server. When a P2P
node requests data status from tracker server, it sends the ID of requested channel and
the playing time of the requested data. Tracker server searches the channel’s corre-
sponding hash table and acquires the related nodes’ information.

130 X. Liao et al.

Fig. 2. Data structure of tracker server

P2P node uses a host-list to maintain data storage status of known nodes. The host-
list is divided into two levels: neighbors list and nodes list. The neighbors list main-
tains information of neighbor nodes which are connected with local nodes, and
neighbor nodes use directional gossip protocol to exchange information of data stor-
age status. The basic idea of directional gossip protocol is that every node just for-
wards gossip messages to the neighbors which can retrieve data from source node or
send data to source node. Suppose the playing time of one message from some
sources is tsource and the current playing time of traversed nodes is tforward, then we
have the following formula: tsource-m≤tforward≤tsource+m, here m represents the total time
length in caches.

Neighbor Nodes
B D F

B

D

F

A

C
E

G

P

Known Nodes
A

B

C

D F

GE

 H
 O
 S
 T

 L
 I
 S
 T

Fig. 3. Host list

3.3 Multi-channel overlay

This paper presents the data storage mechanism from the two areas: 1) constructing a
multi-channel overlay network to balance data storage capability between the differ-
ent kinds of channels; 2) improving utility efficiency of each node’s data cache and
using idle data storage capacity to raise unpopular channels’ data storage capability.

 A Data Storage Mechanism for P2P VoD Based on Multi-channel Overlay 131

The multi-channel overlay network (Figure 4) is constructed on single channel
mesh topology. Compared with the traditional single channel overlay, node can join
two kinds of channels in multi-channel overlay: the main channel and the service
channel. One node in the main channel plays media, stores data and serves other
nodes, and in service channel one node only stores data and serves other nodes. Each
node has only one main channel and can choose several service channels. In Figure 4,
node K’s main channel is channel A, and service channels are channel B and channel
C. Node M’s main channel is channel A and service channel is channel B. Node L’s
main channel is channel B, and have no service channel.

Fig. 4. Multi-channel overlay

Media data will be divided into L data blocks according to granularity τ. Assuming
that the total program’s duration time is T, The value of L is ⎡ ⎤/T τ . Data of playing-

time Ti will be classified into /iT τ⎡ ⎤⎢ ⎥ data block, and uses a serial number /iT τ⎡ ⎤⎢ ⎥ to

identify the data blocks. The data storage capability of a node can be described as the
ability to store several pieces of data blocks: ()⎣ ⎦/N D k τ= × (D is the node physical

storage capability; k is the encoding rate of media file).
When nodes join the system, in accordance with its own storage capabilities and

channel’s network scale. The node will decide the number of data blocks stored of the
main channel. If it still has idle data blocks, the newly joined node chooses channels
that cause the most data source server request, and joins them as its own service chan-
nels. The node provides data storage capacity and stores service channels’ program
data. Throughout the process of accession, node use caching optimization strategy (see
section 3.4) to determine the number of data blocks stored in the main channel and
service channels.

After joining into the network, the node maintains its data store and elutriation ac-
cording to program playing process or data storage state of the whole channel’s P2P
network. The data storage state of one node in one channel can be described as a state
of the attribute set Sp=(Cid, Pc, Np). Cid is the channel’s identifier. Pc is the initial
location of data blocks. Np is the number of data blocks stored locally. Nodes in its
main channels choose the starting block Pc= /pos τ⎡ ⎤⎢ ⎥ . Pos is the program playing

time. The node in its service channels uses neighborhood nodes’ data storage state to
maintain its own data in local cache. Nodes exchange data storage state information

132 X. Liao et al.

through gossip protocol. The node can gather data storage information of neighbor-
hood nodes as a set π(P1, P2, P3, …PN), calculate amount N1 of nodes which have
store data block Pc and amount N2 of nodes which have store data block Pc+Np. If
N1>N2, it means the data stored of other nodes in P2P network are sliding forward. So
the node must slide forward its own data blocks.

3.4 Optimization strategy

In a stable P2P VoD system, after nodes join the P2P network, it can not change the
data block number of its own data storage. Otherwise, when node’s data block num-
ber decreases, it will cause the whole P2P networks’ data loss. So each node in the
main channel of P2P network should determine its number of data blocks according to
the node status and channel’s data storage state, and optimize the number of data
blocks in the storage of the node to optimize whole channel’s data storage capability.

The data storage status of a channel can be described as a set Ω(C1, C2, C3, …CL). L
means total data blocks of the program. Ci (i=1, 2, 3……L) means the number of
nodes which store data block i.

When a node joins its main channel, it requests channel’s data storage status Ω, and
calculates the data blocks number Np that should be stored, according to the data
storage status Ω, node’s maximum data storage capability N and program’s playing
time P. The algorithm is as follow:

Input: Data storage status Ω, maximum data storage ca-
pability N, playing time P

Output: Data blocks number Np

for i = 0 to N do

 CurrentPos = N+P;

 SelectPos=i+P;

 if CCurrentPos < CSelectPos

then Np = i;

 end if;

end for i;

After a node joins its main channel, if it finds still has idle data blocks, the node
distributes the idle data blocks to unpopular channels, according to the data requests
of data source server. Distribution conforms to the following principles: a) priority to
store data blocks that requesting more data at data source server to reduce system
load; b) to reduce the possibility of the same data storage duplication between nodes.

The requesting status of one data block can be described as attribute set Q=(Cid,
Pos, Req), Cid is the channel identifier, Pos is the location of data block, Req is the
current data request number at data source server.

The distribution process of node P is as follow:

 A Data Storage Mechanism for P2P VoD Based on Multi-channel Overlay 133

Step1: Node P acquires systems current requesting data blocks set Ψ(Q1, Q2, Q3,
…QM) at data source server from tracker server;

Step2: Node P sorts set Ψ according to the requesting number Req, and get a new
set Ψ;

Step3: In order to avoid conflict between nodes choice, node P sets a selection
probability α to choose data block. Sequence checks data blocks in set Ψ, and uses
selection probability α to choose whether select or not. When a data block is se-
lected, go to next step;

Step4: Choose channel according to the information of selected data block. Set the
selected data block as node P’s initialize position of data storage, archive channel’s
data storage status S from tracker server;

Step5: Calculate data block number Np using the same method as above;
Step6: Node P joins the selected channel, and sets it at node P’s service channel.

4 Performance Measurement and Analysis

4.1 Simulation Environment

Simulation programs use GT-ITM [13] topology generator to create a network based
on transit-stub model. The network consists of 5 transit domains, each with 20 transit
nodes and one transit node connects to 10 stub domains, each with 10 stub nodes.
Each stub node offers 35MB physical data storage capability. Set program video’s
encoding rate to 480kbps. Stub node is able to store 10 minutes of program data. Set
system total channel count as 100, with each channel duration 90 minutes. Set granu-
larity size as one minute. We divide program data into 90 data blocks. According to
Zipf distribution, set the Zipf constant of the network scale distribution of channels as
0.25. The simulation program test duration is 300 minutes, the start time of nodes in
the same channel in accordance with the Poisson distribution. By comparing the simu-
lation based on single channel overlay data storage and multi-channel overlay data
storage, we analyze the network scale difference and directly data source requests of
the two data storage models, and analyze new multi-channel overlay data storage
mechanism performance.

4.2 Network Scale Difference

As showed in Figure 5, in single channel overlay, more than 80% of the total chan-
nels’ nodes number is below 100. We classify channels of this type as unpopular
channels, and classify the opposite 20% channels as popular channels. By building
multi-channel overlay network, the network scale of most unpopular channels is up-
graded. The node number of smallest channel is 74 nodes. 80% channels’ node num-
ber of entire system are more than 100, 70% channels’ node number of entire system
are between 100 and 200. We can see that by building a multi-channel overlay net-
work, unpopular channels’ network scale are greatly upgraded, the entire system’s
nodes distribution is more balanced than single channel overlay.

134 X. Liao et al.

0 20 40 60 80 100

0

200

400

600

800

1000

1200

N
od

e
nu

m
be

r

Channels

 Single Channel
 Multi-Channel

Fig. 5. Node number per channel

4.3 System Performance

By observing the requests number of data source server during the test period, we
analyze the performance difference of single channel overlays and multi-channel
network. Figure 6 gives each channel’s data source server request number during test
period. In single channel network, the direct data source server request number of
unpopular are more than 600 in general, the average number of data source server
request is 890, and the maximum is 1236. The average number of popular channels’
data source server request is 442.4. In multi-channel overlay network, the average
direct data source server request number of unpopular is 476.1, a decrease of 46.5%,
the maximum is 1236, a decrease of 37.5%. The average number of popular channels’
data source server request is 403.8, a decrease of 8.7%. We can see that providing
some popular channels’ idle data storage ability to store unpopular channels’ program
data can substantially reduce direct requests to data source server. Meanwhile, the
reasonably decrease of popular channels’ data storage capability does not cause the
increase of direct data source server request, but cause the decrease of direct data
source server request by decreasing duplicate data request to source server.

Figure 7 gives source server request per minute during test period. We can observe
that in the initial period, compared with single channel overlay networks. The source
server request pressure is increasing because the number of nodes joining unpopular
channels in multi-channel overlay network is larger than that of single channel over-
lay. After the multi-channel overlay network is built stably, the unpopular channels in
multi-channel overlay have more nodes than that of single channel overlay. The data
storage capability is improved, and direct data source server request is substantially
reduced. From 0 minute to 50 minute, data request per minute to data source server in
single-channel P2P network is 206.5, and in multi-channel overlay network is 212.8,
request number in multi-channel overlay increases 3.1% than that in single channel
overlay. From 51 minute to 300 minute, data request per minute to data source server
in single-channel P2P network is 278.3, and in multi-channel overlay network is
174.3, request number in multi-channel overlay decreases 37.3% than that in single
channel overlay. In the whole test period, data request per minute to data source

 A Data Storage Mechanism for P2P VoD Based on Multi-channel Overlay 135

server in single-channel P2P network is 266.3, and in multi-channel overlay network
is 180.9, request number in multi-channel overlay decreases 32.1% than that in single
channel overlay. Although in the early stage of building a multi-channel overlay net-
work will increase data source server requests to a certain extent, but if the entire
system’s P2P overlay is built stably, multi-channel overlay network can substantially
reduce data request to data source server, and impressive upgrade the entire system
performance.

0 20 40 60 80 100

400

600

800

1000

1200

1400

Se
rv

er
 R

eq
ue

st

Channels

 Single Channel
 Multi-Channel

Fig. 6. Server request per channel

0 50 100 150 200 250 300
50

100

150

200

250

300

350

400

Multi-Channel

Se
rv

er
 R

eq
ue

st

Time

Single Channel

Fig. 7. Server request per minute

5 Related Work

In order to provide a large-scale on-demand streaming service over Internet, several
techniques have been proposed to increase the scalability of on-demand streaming by
adopting peer-to-peer methods. However, most of them try to use a tree-based overlay
to build their logical topology, such as P2Cast [1], P2VoD [2], DirectStream [3],

136 X. Liao et al.

MetaStream [4]. Compared with the traditional methods, i.e. CDN, proxy, and patch-
ing, they achieve better scalability. But for these systems, the greatest challenge is to
accommodate the dynamic change and to mask the impact of node joining or leaving
frequently. Their drawbacks include the following respects. On the one hand, tree
maintenance is always very complicated in order to avoid the impact because of the
silent departure of several key parent nodes. On the other hand, each peer depends on
only one data supplier. This will lead to inefficient resource utilization and increase
the load of the central source server. There are other kinds of streaming systems based
on unstructured overlay, such as SplitStream [6], CoolStreaming [7], GNUStream
[10], PROMISE [8]. However, all of them focus on the streaming overlay construc-
tions for single channel, not for multiple channels.

6 Conclusions

In order to solve the data storage unbalance problem among channels in P2P VoD
system, this paper presents a data storage mechanism based on multi-channel overlay.
In the proposed overlay, nodes of popular channels will join unpopular channels’ P2P
overlays to construct a multi-channel overlay, and use data storage optimization strat-
egy to improve node’s data store ability. This mechanism can effective balance node
distribution among different channels, and improve the storage capability of the entire
system. The experiment results prove the idea.

References

[1] Guo, Y., Suh, K., Kurose, J.: P2Cast: Peer-to-peer Patching Scheme for VoD Service. In:
Proceedings of the 12th World Wide Web Conference (WWW 2003), Budapest, Hungary
(May 2003)

[2] Do, T., Hua, K.A., Tantaoui, M.: P2VoD: providing fault tolerant video-on-demand
streaming in peer-to-peer environment. In: Proceedings of IEEE ICC 2004, Paris, France
(June 2004)

[3] Guo, Y., Suh, K., Kurose, J., Towsley, D.: A Peer-to-Peer On-demand Streaming Service
and Its Performance Evaluation. In: Proceedings of 2003 IEEE International Conference
on Multimedia & Expo (ICME 2003), Baltimore, MD (July 2003)

[4] Zhang, R.M., Butt, A.R., Hu, Y.C.: Topology-Aware Peer-to-Peer On-demand streaming.
In: Proceedings of 2005 IFIP Networking Conference (Networking 2005), Waterloo,
Canada (May 2005)

[5] Chu, Y.-H., Rao, S.G., Zhang, H.: A case for end system multicast. In: Proceedings of
SIGMETRICS 2000, Santa Clara, CA, USA (June 2000)

[6] Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: Split-
Stream: High-Bandwidth Content Distribution in Cooperative Environments. In: Proceed-
ings of ACM SOSP 2003 (October 2003)

[7] Zhang, X., Liu, J., Li, B., Yum, T.-S.P.: Data-Driven Overlay Streaming: Design, Imple-
mentation, and Experience. In: Proceedings of IEEE INFOCOM 2005, Miami, USA
(2005)

 A Data Storage Mechanism for P2P VoD Based on Multi-channel Overlay 137

[8] Heffeeda, M., Habib, A., Botev, B., Xu, D., Bhargava, B.: PROMISE: peer-to-peer media
streaming using CollectCast. In: Proceedings of ACM Multimedia (MM 2003), Berkeley,
CA (November 2003)

[9] Cheng, B., Stein, L., Jin, H., Zhang, Z.: GridCast: Providing Peer-to-Peer On-Demand
Streaming Service Based On Unstructured Overlay. In: Proceedings of Eurosys. 2008
(2008)

[10] Jiang, X., Dong, Y., Xu, D., Bhargava, B.: GnuStream: a P2P Media Streaming System
Prototype. In: Proceedings of International Conferences on Multimedia & Expo (ICME
2003), Maryland, USA (2003)

[11] Sun, Q., Sturman, D.: A Gossip-Based Reliable Multicast for Large-Scale High-
Throughput Applications. In: Proceedings of the Int’l Conf Dependable Systems and
Networks (DSN 2000) (2000)

[12] Hou, M., Lu, X., Zhou, X., Zhang, C.: Study on Replication in Unstructured P2P System.
MINI-MICRO SYSTEMS 26(11), 1903–1906 (2005)

[13] Zegura, E., Calvert, K., Bhattachajee, S.: How to model an Internetwork. In: Proceedings
of INFOCOM 1996 (1996)

[14] Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., Zhang, X.: Measurements, Analysis, and
Modeling of Bit Torrent-like Systems. In: Proceedings of ACM IMC 2005, Berkeley, CA,
USA (October 2005)

HTL: A Locality Bounded Flat Hash Location

Service�

Ruonan Rao, Shuying Liang, and Jinyuan You

Department of Computer Science and Engineering
Shanghai Jiaotong University Shanghai, China 200030

rao-ruonan@cs.sjtu.edu.cn,liangsy@sjtu.edu.cn,you-jy@cs.sjtu.edu.cn

Abstract. Many location services have been proposed, but some chal-
lenges remain. In this paper, we present a new location service, named
HTL (Hash Table Localized) to solve the locality problem, that in a
location service, the location information can be stored potentially far
away from both the source and destination nodes, even when the source
and destination nodes are close. As a result, it causes high overhead in
update and query. HTL uses a double index hash function to map a node
to a location in the network area called the virtual coordination of that
node. Then, a novel method is employed to divide the physical space into
lattices. The publish and query algorithms are designed based on this di-
vision. In HTL, when the distance between the source and destination
nodes is l, the cost of query is O(l2). We define this property as n2-
locality bounded. HTL is the location service that achieves this property
with the least storage and network overhead. Both analysis and exper-
iment results are presented in this paper concerned with the cost, the
locality bounded property and the scalability.

1 Introduction

A mobile ad hoc network (MANET) is a network formed by a collection of mobile
wireless nodes without any perviously deployed infrastructure. Due to the lack
of infrastructure support, each node in MANET should act not only as an end
system but also as a router at the same time.

A fundamental challenge in MANETs research is the design and implementa-
tion of scalable and robust routing protocols. The current routing protocols can
be roughly divided into two categories: Topology-based routing and Geographic-
based routing. The former is based on the knowledge of the whole network’s
topological information while the latter on the knowledge of each node’s posi-
tion. Intuitionally, compared with topological-based routing, geographic-based
routing incurs less communication overhead. However, geographic-based routing
also faces two challenges:

1. How to deliver a packet to destination when the position of destination node
is known? This is called as the forwarding strategy.

� This paper is supported by the Defense Pre-Research Foundation of China under
Grant No.513150302

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 138–149, 2008.
c© IFIP International Federation for Information Processing 2008

HTL: A Locality Bounded Flat Hash Location Service 139

2. How to let the source node know the position of the destination node? This
is called as the location service.

The first one is almost solved by several proposed algorithms, especially GPSR[1]
[2]. Whereas, some problems remain in the second one, though many location
service algorithms have been proposed. One of them is called locality problem,
i.e. the corresponding location information may be stored far away from both
the source and destination nodes, but the source and destination may be close.
As a result, update and query operations cause high overhead. This problem
is more serious in a location service without any hierarchy architecture, which
we called, the flat location service. Compared with hierarchy approach, a flat
location service avoids the complexity of maintaining the hierarchy structure,
but introducing the locality problem. In this paper, we try to solve this problem.

HTL is a flat hash based location service, which means that HTL uses hash
functions to determine where to store the nodes location information, and no
hierarchy in HTL. A hash based approach uses hash functions to map a node to
a location or a region in the network area, then stores the corresponding location
information near or in such location or region. HTL is designed to cooperate with
GPSR to support geographic based routing. With a novel method to divide the
geographic area into lattices, HTL guarantees that when the distance between
the source and destination nodes is l, the query takes at most O(l2) to finish.
HTL is the best one we have known that takes the least cost to achieve such a
property.Some simulation experiments are used to verify HTL.

This paper has 7 sections. It starts with an overview of related works in section
2. In section 3, we state the locality problem of location services in MANET.
In section 4 and section 5, details of HTL and some mathematical analysis are
given. The experiments results are presented in section 6. Section 7 is a short
conclusion with discussion on future works.

2 Related Works

Many location service algorithms have been proposed. Surveys on some of the
algorithms can be found in [3], [4] [5] [6] and [7], but not all of them are hash
based. The following are some typical algorithms proposed related to location
service.

GLS [7] is a location service with a hierarchy of square regions. A node belongs
to only one square in each order in the hierarchy. It stores its location information
on 3 nodes in each square containing it. If two nodes are close enough, they will
be in the same square area with a low order and need not travel a long distance
to exchange the location information. However, the cost of maintaining such a
hierarchy structure is expensive. The work in [8] shows some similar results. In
addition, GLS has not been proved that it has an upper bound of query cost.
LLS[9] is the first location service that takes locality into account. It uses a re-
cursive approach that promulgates the location information to the nodes 2i away
in ith step, with a similar query method. It has been proved that it is d2 locality
bounded. However, the cost of publishing location information and storing the

140 R. Rao, S. Liang, and J. You

location information is relatively high. GHLS protocol proposed in [10] is a sim-
ple flat hash based location service. In this paper, the authors have mentioned
the locality issues, and tried to solve those problems by a method called α-scaled
region– a hash function that maps a node to a location only in a region called
scaled location server region which is similar to the whole area and located
in the center. Intuitively, this approach can reduce the cost of query when the
source and destination nodes are all near the center, but its effect is limited in
other situations. In addition, GHLS does not possess the locality bounded prop-
erty, either. GHT[11] is designed for data-centric storage in sensornets. One can
consider location information as a specifical data in sensornets, and augments of
GHT can also be used as a location service. Although GHLS and our work share
some characteristics with GHT, GHT can not be effectively used as a location
service in MANET. The design objectives in GHT are fundamentally different
from location services. An analysis on GHT in MANET can be found in [12].

3 Locality Problem in Flat Hash Based Location Services

A location service is a service that provides the corresponding location informa-
tion according to a node’s unique identifer. Its main functionality is to support
geographic based routing, when it also can be used to support location related
applications.

In a typical flat hash based location service, a hash function is used to map
each nodes unique identifier to a home region. However, the cost of underlying
routing can be surprisingly high if the source and destination nodes are close,
when the home region is far away. To formally evaluate this problem, following
definition is given.

Definition 1 (Locality Bounded). A location service is called locality
bounded, if the distance between the source node S and the destination node
D is l, and the cost of query the location of D by S is at most f(l). We call such
a location service is f -Locality Bounded.

4 HTL: A Hash Table Localized

In this section, we present the details of HTL. HTL is built on the top of GPSR,
and it cooperates with GPSR to provide geographic based routing. We first
study some properties of GPSR, then some concepts of HTL are introduced,
followed with a novel method by which HTL uses to divide the physical space
being presented. Finally,the publish and query algorithms are illustrated.

4.1 Map to Physical Space

As stated before, a flat hash based location service will map a node’s identifer to
a region named home region using a hash function. HTL uses the same approach
with a little modification. The hash function used in HTL is a double index hash

HTL: A Locality Bounded Flat Hash Location Service 141

function H(N.id) = (h1(N.id), h2(N.id)) that maps node N ’s identifier N.id to
a coordination (h1(N.id), h2(N.id)) inside the area of the network. We call the
associated coordination (h1(N.id), h2(N.id)) of node N N ’s virtual coordination.
The definition is given in definition 2.

Definition 2 (Virtual coordination). A Node N with unique identifer N.id,
its virtual coordination is H(N.id) = (h1(N.id), h2(N.id)), where h1, h2 is hash
functions.

The major difference between typical flat hash based location services and HTL
is that HTL pushes the concept of home region to the extreme: the home region
becomes a single point in this area.

4.2 Divide the Physical Space

With node N ’s identifier N.id, one can find the virtual coordination H(N.id). We
define a parameter d named lattice length. After finding the virtual coordination,
HTL divides the physical space into lattices using the virtual coordination as
the original point according to the following rules:

– Make circles Ci with radius ri = d ∗ i,i = 0, 1, . . .1 with the same center
H(N.id). We call these circles lattice circles.

– For a circle Ci, (i = 1, 2, . . .), let j = �log2 i�, then divide Ci into 2j+2 with
equal angle, starting from the x axis. We denote the lines used to divide the
circle as l2

j+2

m ,m = 0, 1, . . . , 2j − 1, and call them lattice lines. These lines
intersect the circles Ck,k = 2j , 2j +1, . . . , i with points P k

m, which are named
lattice points.

– For each 4 points, Pm
k , Pm+1

k
2, Pm

k+1, Pm+1
k+1 , (m = 0, 1, . . . , 2j − 1,k =

2j, 2j + 1, . . . , i − 1), form a lattice corner, dedicated by LCm
k .

– The area enclosed by lattice corner LCm
k and the corresponding line and

circle is called a lattice, denoted as Lm
k .

4.3 Location Servers Selection and Location Information Update

Unlike other typical flat hash based location service, HTL stores the location
information not only in the home region, but also stores on the way to the home
region. For a node N , assuming its current location is N.loc, and its virtual
coordination is H(N.id). Obviously, a short path that travels along the lattice
lines exits between N.loc and H(N.id). The path can be found based on following
steps:

1. First, determine the lattice L(N.loc) where N is based on N ’s current loca-
tion N.loc:

1 When i = 0, the circle becames the point H(N.id).
2 Here, m+1 means m+1mod2j+2. In this paper, we use mn to denote such situations

when it is not ambiguous.

142 R. Rao, S. Liang, and J. You

(a) Calculate the distance dist between N.loc and H(N.id). Let k = �dist/d�
and j = �log2 i�.

(b) Calculate the angle α from vector
−−−→
(1, 0) to vector

−−−−−−−−−−−−→
(N.loc, H(N.id)) in

anticlockwise direction. Let m = � α
2π

2j+2
� = �2j+1 α

π �.
(c) Then node N is located lattice L(k)m. Two corresponding lattice lines

are l2
j+2

m , l2
j+2

m+1.

2. One of the lattice lines l2
j+2

m , l2
j+2

m+1 is closer to N than another 3. The location
information will be sent along this line.

3. When the path comes to the circle C2j−1 , the lattice line chosen will termi-
nate. However, it may not arrive the virtual coordination H(N.id). Then a
new lattice line should be chosen. If the current lattice line is l2

j′

m′ , the next
lattice to travel is chosen based on the following rule:

– If m′ is an even number, the next lattice line is l2
j′−1

m′/2

– If m′ is an odd number, the next lattice line is l2
j′−1

(m′−1)/2

This rule can be not only applied when the first lattice line is terminated,
but also suitable for the next lattice line and next’s next lattice line.

The shortest path to the virtual coordination can be found. But where the loca-
tion information will be stored? In each lattice line along the path found, there
are several lattice points, called server coordinations. The location servers are
the nodes nearest to these server coordinations. The location information of N
will be stored on these nodes.

Then another problem arises—how to deliver the packet to the nodes that are
nearest to the server coordinations? We use GPSR routing to solve this problem.
Some properties of GPSR can help to decide when and who will consume the
packet for location disseminating. Thus a location server can be easily found
during the routing process. The next question to answer is when should a node
publish its location information into HTL, and how?

When Node N moves from location x to location y, it performs the publish
as following:

– If LN(x) = LN(y), new location information is published to the same
servers.

– Else, node N first issues a packet to infor the servers that store the old
location information to erase the information. Then it publishes the new
location information.

Another parameter du is defined to indicate the distance a node can move be-
fore it do a update. Generally speaking, when a node move from one lattice to
another, it must perform an update. As a result, du should not be larger than
d/2, where d is the lattice parameter defined above.

3 If the distances from N to the two lines are equal, l2
j+2

m is chosen.

HTL: A Locality Bounded Flat Hash Location Service 143

4.4 Perform Query

When node S wants to know where D is, it performs a query operation. The
query operation performs in tow modes: extension mode and non-extension
mode. In extension mode, the query will goes to the servers located on the
adjacent lattice lines, when in non-extension mode, the query is limited to cur-
rent lattice lines. The query process try to cover the area that may intersect with
the path where D puts its location information as soon as possible. The details
of the query process is described bellow.

1. In step 1, S calculates which lattice of D it is in using the method given
in previous section. We denote this lattice as Lm

k . Node S first query the
location servers whose location server coordination are Pm

k and Pm+1
k in

extension mode(Pm
k left-extension and Pm+1

k right-extension).
2. In step i (i = 1, 2, 3, . . . , k − 1), location servers Pm′

k−i+1
4 will get the query.

It process the query based on the following situations:

– It knows where D is, then it answer this query, and informs other location
server in the same iterative level to terminate this query.

– It dose not know the answer.
• The query is in non-extension mode.

∗ k − i + 1 == 2j, no future action is needed.
∗ k−i+1! = 2j, forward the query to Pm′

k−i in non-extension mode.
• The query is in extension mode. We only discuss the left-extension

case. The right-extension case is similar.
∗ k − i + 1 == 2j and m′ is an odd number. Deliver a query to

P
m′−1

2
k−i in left-extension mode.

∗ k − i + 1 == 2j and m′ is an even number. Deliver a query

to P
m′
2 −1

k−i in left-extension mode and a query to P
m′
2

k−i in non-
extension mode.

∗ k − i + 1! = 2j , Deliver a query to Pm′−1
k−i in left-extension mode

and a query to Pm′

k−i in non-extension mode.
3. In step k, the query arrives H(D.id). If the location server knows where D

is, then it reply the answer, otherwise it will tell S the location of D is not
known.

Figure 1 gives an example of query in HTL. Node S wants to know where D
is. It calculates the lattice of D where it is in. In the example, S is in L19

6 , it
deliver queries to P 19

6 in left-extension mode and to P 20
6 in right-extension mode.

We trace the thick line in figure 1 to explain the query process in detail. In the
first iterative step, P 19

6 , 6 is not the power of 2. P 18
5 (left extension mode), P 19

5

(non-extension mode) will get the query. Then, P 17
4 (left extension mode), P 18

4

(non-extension mode), P 19
4 (non-extension mode). Here, 4 = 22, and 17 is an odd

number. Then, P 17
4 deliver query to P 8

3 . The process will go on until a server
replies or the query arrives H(D.id).
4 We use the location server coordination to denote location server, when there is no

ambiguousness.

144 R. Rao, S. Liang, and J. You

H(D.id)

L

1

1

2

2
2

2

3
3

3
3

3
3

4

4

4
4 4

5
5
5

5
5 5 5

6
6
6 6 6

7

P 19
6

P 18
5

P 19
5

P 17
4

P 18
4P 19

4

P 8
3

P 9
3

X

Y

Fig. 1. An Example of Query in HTL

4.5 Location Servers Maintain

Due to the node mobility, location information stored on one location server may
need to be migrated to other nodes that become closer to the server coordination.
As in GHLS[10], every node acts as a location server to check whether there is a
neighbor node closer to the server coordination when it receives a beacon packet
from another node. GPSR uses beacon to construct the location information
about its neighbor nodes. HTL uses this facility of GPSR to maintain the location
servers.

5 Analysis on HTL

Due to space limitation, we omit some properties of HTL here, but remain the
most important one, the Locality Bounded Property. A further analysis for this
property is also shown.

Query Cost and Locality Bounded Property: As stated before, the most
remarkable feature of HTL is that HTL is l2 locality bounded.

Theorem 1. HTL is l2 locality bounded.

The proof is not presented here due to the limitation of space.

A brief Comparison: Table 1 gives a brief comparison between HTL and other
location service related in section 2. For detailed analysis, please refer [12],[10]
and [13]. From the table, we can conclude that only LLS and HTL bear the
property of locality bounded. Yet compared with LLS, HTL is with less network
and storage overhead.

6 Experiments

In this section, we present the experiments results on HTL. The experiments
are concerned with the performance of HTL in static network, and in mobile
network and with the issue of scalability.

HTL: A Locality Bounded Flat Hash Location Service 145

Table 1. A brief Comparison

GLS GHLS GHT LLS HTL

Cost of publish O(h2) O(
√

N) O(
√

N) O(u2) O(
√

N)

Cost of Storage O(h) O(1) O(Dens) O(u2) O(
√

N)

Server Maintaining O(2h) O(1) O(N) N/A O(1)

Locality Bounded N/A N/A N/A O(l2) O(l2)

In GLS the height of grid is set to h, and in LLS the unit length is u. N is the number
of nodes in the network.

6.1 Experiment Method and Metrics

We have implemented HTL in ns2[14]. In all experiments, we use a 802.11 radio
model with a nominal bit-rate of 11Mbps and a transmission range of 250m.
The discrete metrics are listed in table 2. The experiments on static and mobile
networks run 300s, and the experiments on scalability run 150s.

Table 2. Metrics used for evaluating HTL

Metric Description

Pn The number of packets used to publish location information. We call such packets PUT
packets.

Pr The average hops a PUT packet travels.

Rn The number of packets used to erase location information. We call such packets REMOVE
packets.

Rr The average hops a REMOVE packet travels.

Un The number of packets used to migrate location information to another node. We call such
packets UPDATE packets.

Ur The average hops a UPDATE packet travels.

LNmax The maximum number of location information entries a node stored.

LNmin The maximum number of location information entries a node stored.

LNave The average number of location information entries a node stored.

RQS The ratio of query success.

All experiments are performed as following:

– In the first a few second (30s), all nodes publish their location information
into HTL.

– Then, each node chooses a destination randomly and independently, and
queries its location.

Concerned with static networks, the topology scenarios are generated using the
following model:

1. Uniform and Random Network. If there are N nodes in the network, then
we divide the whole area of the network into N parts with equal area. Each
node is placed randomly in each divided part.

146 R. Rao, S. Liang, and J. You

In each topology, we vary the node densities and the value of lattice parame-
ter d. The node densities are varied among 5625m2/node, 10000m2/node, and
22500m2/node. d are varied among 100m, 150m, 200m, 250m, and 300m.

Concerned with mobile networks, we use random way point mobility model
(RWP) for evaluating HTL in an entity mobility model and reference point
group mobility model (RPGM) for evaluating HTL in a group mobility model.
We use IMPORTANT[15] to generate the mobile scenarios. Concerned with the
scalability issue, we study the performance of HTL in both static and mobile
network by varying the number of nodes.In static network, the uniform and
random topology is chosen, when in mobile network, the RPW mobility model
is chosen.

6.2 Results on Static Network

Table 3 gives the results of experiments on static networks.Based on the results
shown above, we can verify the analytical results in the previous section. For
example, in the case where the density of nodes is 10000m2 and d is 250m,
the distance between a node N and its virtual coordination H(N.id) is among
[0, 1000

√
2]. If the hash function distributes uniformity, then the average dis-

tance is about 700m. The average store cost should be 700/250 ≈ 3, and the
experiment result is 3.3. A little higher than theory result, but in a reasonable
range. Concerned with the locality bounded property, in the random destination
chosen model we used, the distance between the source and destination nodes
is also approximately 700m. Without locality, the cost for query should approx-
imately equal to the cost of publish. In the result, the Qr is smaller than Pr,
which means that with locality, distances of a query packet travels decreases.

Table 3. Experiment results in static network

Density(m2/node) d(m) Pn Pr Rn Rr Un Ur Qr LNmin LNmax LNave QSR

5625 100 100 4.3 0 - 0 - 3.4 0 13 2.4 100%

5625 150 100 3.7 0 - 0 - 3.1 0 14 2.5 100%

5625 200 100 3.1 0 - 0 - 3.2 0 17 2.4 100%

10000 150 100 5.2 0 - 0 - 3.7 0 11 3.0 100%

10000 200 100 4.9 0 - 0 - 3.3 0 11 2.9 100%

10000 250 100 4.7 0 - 0 - 3.0 0 13 3.3 100%

22500 200 100 6.3 0 - 0 - 4.2 0 12 3.7 100%

22500 250 100 6.2 0 - 0 - 4.1 0 12 3.5 100%

22500 300 100 6.7 0 - 0 - 3.9 0 13 3.6 100%

6.3 Results on Mobile Network

Results on RWP: Figures 2(a), 2(c), 2(b), 2(d), 2(e), 2(f), 2(g), and 2(h) give
the results of experiments on RWP. The conclusions can be drawn are:

HTL: A Locality Bounded Flat Hash Location Service 147

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6

(a) Pn

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6

(b) Pr

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5

(c) Rn

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6

(d) Rr

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6

(e) Qr

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6

(f) Un

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6

(g) Ur

 90

 92

 94

 96

 98

 100

 0 1 2 3 4 5 6

(h) QSR

Fig. 2. Results of RWP

– The QSR decreases when the speed increases. This is also a problem in all
current available location services as shown in [10] and [8]. In mobility sit-
uations, this occurs when the destination node is reachable, but the links
to location servers are broken. Unlike other similar approaches, the loca-
tion servers in HTL are not concentrated near the home region (or virtual
coordination). Thus, the chances that all location servers are not reachable
decreases, and the QSR is higher than other approaches.

– The results also show the locality property of HTL, Qr is almost constant
when the speed varies.

Results on RPGM: The experiment results on RPGM are given in table 4.
The performance in RPGM is better than RWP in the case with comparable
parameters, expecting that the Pr is higher in RPGM than that in RWP. The
better performance is due to consistent of nodes movement in RPGM. The higher
Pr is because in a group mobility mode, all nodes may be concentrated in a small
area, where some virtual coordination are outside. Then a long routing path may
be needed to find the corresponding location server.

Table 4. Experiment results on RPGM

Pn Pr Rn Rr Un Ur Qr Sq Locmax Locave

1789 7.4 1543 6 2145 1.3 4.1 100% 29 4.7

6.4 Results on Scalability

The results of the experiments on the issue of scalability of HTL are given
in figure 3 and figure 4. Note that not all metrics defined in section 6.1 are
used to evaluate the scalability of HTL. It is not only because the space limi-
tation, but also because other metrics are not related to the issue of scalability.

148 R. Rao, S. Liang, and J. You

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

(a) Pr

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

(b) Qr

 96

 98

 100

 102

 104

 0 50 100 150 200 250

(c) Sq

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250

(d) Locave

Fig. 3. Scalability of HTL in static networks

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

(a) Pr

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

(b) Qr

 96

 98

 100

 102

 104

 0 50 100 150 200 250

(c) Sq

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

(d) Locave

Fig. 4. Scalability of HTL in mobile networks

7 Conclusion

In this paper we present a new location service named HTL, which possesses
the property of locality bounded. The most remarkable of HTL is that HTL is
the best one of so many location services proposed incorporating locality with
minimal cost introduced. HTL employs a novel method to divide the physical
space into lattices. The publish and query algorithms are based on this division.
HTL is l2 locality bounded, which means the cost of query is at most l2, when
the distance between the source and destination node is l. We give the analytical
and simulation results in details in this paper.

Although HTL gives promising results both on theoretical analysis and sim-
ulative experiments. Some issues are worth future studying.

The first one is on the low bound of the locality bounded property. In both
LLS and HTL, the result is O(l2). We doubt it is the best answer. If it is not, then
what is the lower bound of locality a location service can achieve? Intuitionally,
O(l2) may be the final answer. Think about a node who knows the destination is
at most l away, but do not know the exact location. It should reach all possible
locations, which is O(l2).

The second one is about HTL itself. Compared with other similar approaches,
HTL needs more computing capability. In HTL, types of computing include
computing on trigonometric function, manipulation on vectors and so on, all of
which do not appear in other location services. Although the computing power
of mobile devices are continuing increasing, reduce the complexity of HTL is still
worth future investigating.

HTL: A Locality Bounded Flat Hash Location Service 149

References

1. Karp, B.N.: Geographic routing for wireless networks. Ph.D. dissertation, Harvard
Universtiy (2000)

2. Karp, B.N., Kung, H.T.: Greedy perimeter stateless routing for wireless networks.
In: Proc. of the 6th Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (MobiCom 2000), August 2000, pp. 253–254 (2000)

3. Bae, I.-H., Liu, H.: FHLS: Fuzzy Hierarchical Location Service for Mobile Ad Hoc
Networks. In: Fuzzy Systems Conference FUZZ-IEEE (July 2007)

4. Chang, Y.-J., Shih, T.L.: Intersection location service and performance comparison
of three location service algorithms for vehicular ad hoc networks in city environ-
ments. In: 3rd International Symposium on Wireless Pervasive Computing (May
2008)

5. Camp, T., Boleng, J., Wilcox, L.: Location Information Services in Mobile Ad Hoc
Networks. In: Proc. of the IEEE International Conference on Communications
(ICC) (2002)

6. Mauve, H.H.M., Widmer, J.: A survey on position-based routing in mobile ad hoc
networks. IEEE Network (2001)

7. Li, J., Jannotti, J., Couto, D.S.J.D., Karger, D.R., Morris, R.: A scalable location
service for geographic ad hoc routing. In: ACM MobiCom (August 2000)

8. Kasemann, M., Hartenstein, H., Fuber, H., Mauve, M.: Analysis of a location ser-
vice for position-based routing in mobile ad hoc networks. In: Proc. of the 1st
German Workshop on Mobile Ad-hoc Networking (WMAN 2002) (March 2002)

9. Abraham, I., Dolev, D., Malkhi, D.: Lls: a locality aware location service for mobile
ad hoc networks. In: Proc. of the 2004 Joint Workshop on Foundations of Mobile
Computing(DIALM-POM) (2004)

10. Saumitra, H.P., Das, M., Hu, Y.C.: Performance comparison of scalable location
services for geographic ad hoc routing. In: 24th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2005) (2005)

11. Ratnasamy, S., Karp, B., Estrin, D., Govindan, R., Shenker, S.: Ght: A geographic
hash-table for data-centric storage in sensornets. In: The First ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA 2002), Atlanta,
GA (September 2002)

12. Liu, F., Rao, R.: Analysis of ght in mobile ad hoc network. In: The Proceeding of
Third International Symposium on Parallel and Distributed Processing and Appli-
cations (ISPA 2005), Nanjing, China (November 2005)

13. Liu, F.: Research on location services in mobile ad hoc network, Masters thesis,
Shanghai Jiaotong University (2005)

14. The network simulator - ns-2, http://www.isi.edu/nsnam/ns/
15. Helmy, F.B.N.S.A.: The important framework for analyzing the impact of mobility

on performance of routing for ad hoc networks. Ad Hoc Networks Journal 1(4),
383–403 (2003)

http://www.isi.edu/nsnam/ns/

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 150–161, 2008.
© IFIP International Federation for Information Processing 2008

Accelerating the Propagation of Active Worms by
Employing Multiple Target Discovery Techniques

Xiang Fan and Yang Xiang

School of Management and Information Systems
Centre for Intelligent and Networked Systems

Central Queensland University
North Rockhampton, Queensland 4701 Australia
{x.fan2,y.xiang}@cqu.edu.au

Abstract. Recently, active worms have done significant damage due to their
rapid propagation over the Internet. We studied propagation mechanisms of ac-
tive worms employing single target discovery technique and various combina-
tions of two or three different target discovery techniques from attackers’ per-
spective. We performed a series of simulation experiments to investigate their
propagation characteristics under various scenarios. We found uniform scanning
to be an indispensable elementary target discovery technique of active worms.
Our major contributions in this paper are first, we proposed the discrete time de-
terministic Compensation Factor Adjusted Propagation (CFAP) model of active
worms; and second, we suggested the combination of target discovery tech-
niques that can best accelerate propagation of active worms discovered from re-
sults of the comprehensive simulations. The significance of this paper lies in it
being very beneficial to understanding of propagation mechanisms of active
worms, and thus building effective and efficient defense systems against their
propagation.

Keywords: Network Security; Invasive Software; Worms; Propagation;
Modeling.

1 Introduction

Kienzle and Elder defined a worm as ‘malicious code (standalone or file-infecting)
that propagates over a network, with or without human assistance’ [1]. Weaver et al.
defined a computer worm as ‘a program that self-propagates across a network exploit-
ing security or policy flaws in widely-used services’ [2]. In this paper, we define
active worms as those which actively self-propagate across a network exploiting secu-
rity or policy flaws in widely-used services by employing scanning, pre-generated
target list, or internally generated target lists (target lists for short) as their target dis-
covery technique. The Code Red worms of 2001 (Code-RedI v1, Code-RedI v2, and
CodeRedII) employed various types of scanning as their target discovery techniques
[3]. The Slammer (sometimes called Sapphire) worm of 2003 employed uniform
scanning as its target discovery technique [4]. The most recent Witty worm of 2004
employed scanning as its target discovery technique as well [5]. If IP addresses of

 Accelerating the Propagation of Active Worms 151

vulnerable hosts could be obtained in advance, there exists an opportunity to employ
pre-generated target list as a worm’s target discovery technique. Pre-generated target
list is also termed as ‘hit-list’ [6]. Internally generated target lists are lists found on
infected hosts which contain information about other potential vulnerable hosts. The
Morris Internet Worm of 1988 employed internally generated target lists as its target
discovery technique [7].

Recently, active worms have done significant damage due to their rapid propaga-
tion over the Internet. For example, the Code Red worm caused about $2.6 billion
financial loss in July and August 2001 alone [8]. The situation of worm defenders will
be worsened if worms stop propagation by using some self-stopping mechanisms [9]
after they have successfully infected nearly all vulnerable hosts. For example [3], the
Code Red worms propagated for a time, then stopped propagating, and then focused
all of its intention on executing a Distributed Denial of Service (DDoS) [10] attack on
a specific host.

According to Xiang et al. [11], an active worm is not limited to employing single
target discovery technique only, and thus future active worms could employ multiple
target discovery techniques simultaneously in an attempt to accelerate their propaga-
tion. To find an effective countermeasure against this sort of future worms, we studied
propagation mechanisms of active worms employing single target discovery tech-
nique only, and a combination of two or three different target discovery techniques
from attackers’ perspective. We also performed a series of simulation experiments to
investigate their propagation characteristics under various scenarios.

2 Related Work

Life cycle of a worm from when it is released to when it finishes infecting vulnerable
hosts, consists of the initialization phase, the network propagation phase, and the
payload activation phase [12]. In the network propagation phase, a worm attempts to
infect its target hosts by performing a sequence of actions including target acquisition,
network reconnaissance, attack, and infection. Since target acquisition and network
reconnaissance together essentially dictate target discovery technique(s) employed by
a worm, we derived the significance of target discovery techniques in shaping a
worm’s propagation characteristics from its life cycle in [11].

Scanning could be implemented differently, which leads to several different types
such as uniform scanning, preferential scanning, sequential scanning [13], routable
scanning [14], selective scanning [14], or importance scanning [15]. In the case where
the distribution of vulnerable hosts is not available in advance, self-learning that in-
formation will be incorporated into the implementation of importance scanning [16].
An incomplete hit-list could be used to increase the number of initially infected hosts
and thus accelerate a worm’s propagation. A complete hit-list creates a ‘flash’ worm
[17], capable of infecting all vulnerable hosts extremely rapidly. An active worm
attacking a flaw in peer-to-peer applications could easily get lists of peers from their
victims and use those peers as the basis of their attack, which gives an example of
employing the internally generated target lists as one’s target discovery technique.

We summarized the factor(s) improved by active worms employing the various
target discovery techniques to accelerate their propagation in [11].

152 X. Fan and Y. Xiang

Mathematical models developed to model propagation of infectious diseases have
been adapted to model propagation of computer worms [13]. In epidemiology area,
both deterministic and stochastic models exist for modeling the spreading of infec-
tious diseases [14-17]. In network security area, both deterministic and stochastic
models of active worms based on their respective counterpart in epidemiology area
have emerged. Deterministic models of active worms could be further divided into
two categories: continuous time and discrete time.

For a finite population of size N, the classical simple epidemic model [13-16] could
be defined by the following single differential equation:

()

()[()]
dI t

I t N I t
dt

β= − , (1)

where I(t) denotes the number of infectious hosts at time t; and β stands for the pair-
wise rate of infection in epidemiology studies [17]. Let i(t) stand for the fraction of
the population that are infectious at time t, the following differential equation could
be derived:

()

()[1 ()]
di t

N i t i t
dt

β= − . (2)

Differential equation (2) has the following general analytical solution:

()

()
()

1

N t T

N t T

e
i t

e

β

β

−

−
=

+
, (3)

which is the logistic equation. A particular analytical solution of differential equation
(2) given its initial condition i(0) = I(0) / N is as follows:

(0)

()
(0) [(0)] N t

I
i t

I N I e β−=
+ −

. (4)

The classical general epidemic model (Kermack-McKendrick model) [13-16] im-
proves the classical simple epidemic model by considering removal of infectious
hosts due to patching. The two-factor worm model [18] extends the classical general
epidemic model by accounting for removal of susceptible hosts due to patching and
considering the pairwise rate of infection as a variable rather than a constant. The
Analytical Active Worm Propagation (AAWP) model [19] takes into account the time
an infectious host takes to infect other hosts. The time to infect a host is an important
factor for the spread of active worms [20]. Since propagation of active worms is a
discrete event process, the discrete time deterministic model of active worms (the
AAWP model) given above is more accurate than its continuous time counterparts in
the deterministic regime.

Rohloff and Basar presented a stochastic density-dependent Markov jump process
propagation model [21] for active worms employing the uniform scanning approach
drawn from the field of epidemiology [14, 17]. Sellke et al. presented a stochastic
Galton-Watson Markov branching process model [22] to characterize the propagation
of active worms employing the uniform scanning approach.

 Accelerating the Propagation of Active Worms 153

3 Mathematical Analysis and the Proposed Model

For the classical simple epidemic model (1) given in the last section, Fig. 1 shows the
dynamics of It -- denoted by I(t) in equation (1) -- as time goes on for a certain set of
parameters [23].

Fig. 1. Classical simple epidemic model

According to Fig. 1, we can roughly partition a worm’s propagation into three
phases: the slow start phase, the fast spread phase, and the slow finish phase. During
the slow start phase, since It << N, model (1) becomes:

 t
t

dI
N I

dt
β≈ , (5)

which means that the number of infectious hosts increases exponentially approxi-
mately. After a certain number of susceptible hosts are infected and then participate in
infecting others, the worm enters its fast spread phase where susceptible hosts are
infected at a fast, nearly constant rate. When most susceptible hosts have been in-
fected, the worm enters its slow finish phase because the few susceptible hosts left-
over are difficult for the worm to find.

According to equation (4),

 0

0 0()t N t

I
i

I N I e β−=
+ −

. (6)

Letting a = I0, b = N – I0, and c = -Nβ will transform equation (3.2) to:

 t ct

a
i

a be
=

+
. (7)

154 X. Fan and Y. Xiang

The first derivative of is worked out and shown as follows:

2()

ct
t

ct

di abce

dt a be

−=
+

. (8)

We can then work out the second derivative of and let it equal to 0:

2

2
0td i

dt
= . (9)

This will lead to it = 50%. In other words, the maximum rate at which susceptible
hosts are infected is achieved at the moment when 50% of susceptible hosts are in-
fected.

We define fast spread as that with a rate not less than half of the maximum rate,
which will lead to it ≈ 15% and 85%. In other words, according to our definition of
fast spread, when less than 15% of susceptible hosts are infected, the worm is in its
slow start phase; when more than 85% of susceptible hosts are infected, the worm is
in its slow finish phase; in between, the worm is in its fast spread phase.

It is obvious that in order to accelerate a worm’s propagation, we must try to let the
worm infect the first 15% susceptible hosts and enter its fast spread phase as soon as
possible. On the other hand, the last 15% susceptible hosts leftover are not important
for attackers if infection of 85% susceptible hosts will serve their purposes, which is
usually the case.

Next, we present our proposed discrete time deterministic Compensation Factor
Adjusted Propagation (CFAP) model of active worms employing uniform scanning as
their target discovery technique. Let η and Ω stand for a worm’s scanning rate and
scanning space, respectively. Assume at time t, there exist It infectious hosts. Then at
time t + 1/η, by assuming the probability of different infectious hosts hitting the same
susceptible host to be 0, there will be It+1 = It + ∆It infectious hosts, where

()t t

t

I N I
I

−∆ =
Ω

. (10)

During the process that more and more susceptible hosts are infected and then par-
ticipate in infecting others, the probability of different infectious hosts hitting the
same susceptible host is not a constant. Therefore, the actual number of newly in-
fected hosts is less than that predicted by equation (10). Here, we introduce a com-
pensation factor denoted by to account for the difference between them, which varies
as time goes on. Therefore, our discrete time deterministic CFAP model could be
described by the following difference equation:

 1

()t t
t t t

I N I
I I C+

−= + −
Ω

. (11)

There exist two methods to determine Ct, which are mathematical analysis or
simulation. To predict Ct in a closed form (i.e., with no or very little iteration),
mathematical analysis is usually employed. However, in some situations it could be
very difficult, if not impossible, to derive a formula of Ct as a function of t. Then, we
have to perform simulation experiments to find approximate value of Ct at each time t.

 Accelerating the Propagation of Active Worms 155

4 Simulation Experiments

There are four different ways to study the characteristics of a piece of self-
propagating code, which are using test beds, performing real world experiments, cre-
ating mathematical models, and performing simulation experiments [24]. Among
them, simulation experiments are often very effective tools to understand complex
processes.

We systematically examined propagation characteristics of active worms employ-
ing single target discovery technique only, and a combination of two or three different
target discovery techniques by conducting a series of simulation experiments under
various scenarios. In order to reduce simulation time, we performed our simulation
experiments in a class A /8 subnet. In other words, we used scale-down by a factor of
1/28 to explore worm dynamics. According to Weaver et al. [25], scale-down intro-
duces two notable artifacts: a bias towards more rapid propagation (propagation curve
being shifted to the left due to scale-up of the density of initially infected hosts), and
an increase in stochastic effects. Although these artifacts are significant, scale-down
can still capture general behavior as long as the scale-down factor is not too extreme
[25]. Therefore, scale-down is an efficient way to understand complex processes if the
scale-down factor is appropriately chosen.

Our simulation experiments were based on the assumption that susceptible hosts
are uniformly distributed in the above address space with vulnerability density ap-
proximately equivalent to that of the Slammer worm. We also assumed average worm
scanning rate to be equivalent to the Slammer’s as well. All simulations started with
only 1 initially infected host, which is equivalent to 28 initially infected hosts in the
Slammer’s case.

In order to eliminate variation in results from different simulation runs for each
certain scenario, we performed 10 simulation runs for each scenario using the simula-
tor implemented in C programming language custom made for our simulation ex-
periments. Results from all simulation runs are then averaged to produce final result
for each scenario. We repeated our simulation experiments and got exactly the same
average results, which indicated that stochastic effects could be eliminated, and the
scale-down factor chosen was appropriate.

4.1 Simple Scenarios

Before we studied propagation characteristics of active worms employing a combina-
tion of two or three different target discovery techniques, we had studied propagation
characteristics of active worms employing only one of the following target discovery
techniques: uniform scanning; a complete hit-list; or internally generated target lists.

The above three kinds of active worms became the first 3 scenarios to be simu-
lated, which are summarized in Table 1. Propagation rate of active worms employing
uniform scanning only was our baseline to be compared to. Since an incomplete
hit-list only cannot let a worm infect more hosts than those in the list, in practice it
must be combined with other target discovery technique(s). Therefore, we chose a
complete hit-list as one of the above 3 fundamental target discovery techniques. Av-
erage size of internally generated target lists was a candidate factor whose influence
on a worm’s propagation characteristics was to be investigated.

156 X. Fan and Y. Xiang

Table 1. A summary of the 3 simple scenarios simulated

Scenario Type Scenario Code Target Discovery Technique Employed
Simple U Uniform Scanning Only
Simple H100% A Complete Hit-list Only
Simple I1 Internally Generated Target Lists Only with Average Size of 1
Simple I2 Internally Generated Target Lists Only with Average Size of 2

Simple I3 Internally Generated Target Lists Only with Average Size of 3

Table 2. A summary of simulation results of the 3 simple scenarios

Scenario Type Scenario Code Average Time (in seconds) to Infect 99% Susceptible Hosts
Simple U 142
Simple H100% 1
Simple I1 Indefinite (maximum infection rate 7% achieved in 1 second)
Simple I2 Indefinite (maximum infection rate 79% achieved in 1 second)
Simple I3 Indefinite (maximum infection rate 94% achieved in 1 second)

According to the results (Table 2) from our simulation experiments, a complete

hit-list makes a worm propagate extremely rapidly. However, the feasibility of this
approach is discounted by the extreme difficulties that will be encountered by at-
tackers in gathering such a list. Due to their exactly same propagation mechanism,
an incomplete hit-list lets a worm infect all susceptible hosts in the list as soon as a
complete hit-list does. Therefore, an incomplete hit-list is a more feasible approach.
It is obvious that active worms only employing internally generated target lists with
average size not greater than 3 cannot achieve infection of over 99% susceptible
hosts. An explanation to this phenomenon could be that less than 99% of all suscep-
tible hosts are in the combined internally generated target lists of all susceptible
hosts infected. However, average size of internally generated target lists has a great
influence on the maximum infection rate (maximum percentage of susceptible hosts

255

1

300

1

282

0

50

100

150

200

250

300

0 50 100 150

Nu
m

be
r o

f I
nf

ec
tio

us
 H

os
ts

Time (in seconds)

Uniform Scanning
Only

A Complete Hit-List
Only

Internally Generated
Target Lists Only (with
Average Size of 3)

Fig. 2. A comparison of propagation curves of the 3 simple scenarios

 Accelerating the Propagation of Active Worms 157

a worm can infect). A slight increase in average size from 1 to 3 leads to a dramatic
increase in the maximum infection rate. Furthermore, maximum infection rates are
achieved in 1 second for all average sizes (1, 2, or 3). As we mentioned earlier in
this paper, infection of 85% susceptible hosts would usually serve attackers’ pur-
poses. Therefore, internally generated target lists with average size of 3 (with
maximum infection rate of 94%) could be employed by active worms to accelerate
their propagation. A comparison of propagation curves of the 3 simple scenarios is
illustrated by Fig. 2.

4.2 Scenarios with Moderate Complexity

Then, propagation characteristics of active worms employing a combination of two
different target discovery techniques formed the focus of our research. As we men-
tioned earlier in this paper, in order to accelerate a worm’s propagation, we must try
to let the worm infect the first susceptible hosts and enter its fast spread phase as soon
as possible. According to our simulation results of the above 3 simple scenarios, both
an incomplete hit-list and internally generated target lists can let a worm infect a cer-
tain percentage of susceptible hosts in just one second. Therefore, each of these two
target discovery techniques could be followed by uniform scanning to let the worm
infect those susceptible hosts leftover. In our simulation experiments, active worms
employing an incomplete hit-list followed by uniform scanning as their target discov-
ery techniques would sequentially probe all those hosts in the hit-list prior to employ-
ing uniform scanning. Active worms employing internally generated target lists fol-
lowed by uniform scanning would sequentially probe all those hosts in the target lists
generated in process prior to employing uniform scanning.

The above two kinds of active worms formed the basis of our 6 scenarios with
moderate complexity to be simulated, which are summarized in Table 3. Since we
intended to shorten a worm’s slow start phase, in which less than of susceptible hosts
are infected, an incomplete hit-list with size up to 15% of the number of all suscepti-
ble hosts was employed. Both size of incomplete hit-list and average size of internally
generated target lists were candidate factors whose influences on a worm’s propaga-
tion characteristics were to be investigated. We have simulated a limited number of
scenarios. More scenarios could be investigated to determine the relationship between
average time to infect 99% susceptible hosts and size of hit-list, and the relationship
between average time to infect 99% susceptible hosts and average size of internally
generated target lists.

According to the results (Table 4) from our simulation experiments, an incomplete
hit-list with size of 5% of the number of all susceptible hosts followed by uniform
scanning accelerates a worm’s propagation dramatically. However, this approach’s
capability to accelerate active worms’ propagation is diminishing while size of the hit-
list is increasing. Active worms employing internally generated target lists followed by
uniform scanning performed especially well under all average sizes (1, 2, or 3) of the
target lists. Here, average size of the target lists has a great influence on a worm’s
propagation rate. The larger the average size becomes, the faster the worm
propagates.

158 X. Fan and Y. Xiang

Table 3. A summary of the 6 simulated scenarios with moderate complexity

Scenario Type Scenario Code Target Discovery Techniques Employed

Moderate H5%+U
An Incomplete Hit-list with Size = 5% of the Number of
All Susceptible Hosts; Followed by Uniform Scanning

Moderate H10%+U
An Incomplete Hit-list with Size = 10% of the Number of
All Susceptible Hosts; Followed by Uniform Scanning

Moderate H15%+U
An Incomplete Hit-list with Size = 15% of the Number of
All Susceptible Hosts; Followed by Uniform Scanning

Moderate I1+U
Internally Generated Target Lists with Average Size of 1;
Followed by Uniform Scanning

Moderate I2+U
Internally Generated Target Lists with Average Size of 2;
Followed by Uniform Scanning

Moderate I3+U
Internally Generated Target Lists with Average Size of 3;
Followed by Uniform Scanning

Table 4. A summary of simulation results of the 6 scenarios with moderate complexity

Scenario Type Scenario Code Average Time (in seconds) to Infect 99% Susceptible Hosts
Moderate H5%+U 99
Moderate H10%+U 89
Moderate H15%+U 85
Moderate I1+U 60
Moderate I2+U 36
Moderate I3+U 21

We have also investigated propagation characteristics of active worms employing

both an incomplete hit-list and internally generated target lists as their target discov-
ery techniques. According to our simulation results of the 3 simple scenarios, an
incomplete hit-list ought to be employed prior to internally generated target lists
because generally the former is more effective to boost the number of initially in-
fected hosts. Therefore, in our simulation experiments, active worms employing
both an incomplete hit-list and internally generated target lists as their target dis-
covery techniques would sequentially probe all those hosts in the hit-list prior to
sequentially probing all those hosts in the target lists generated in process. Our simu-
lation results show that active worms employing internally generated target lists with
average size not greater than 3 cannot achieve infection of over 99% susceptible
hosts, even if the number of initially infected hosts is boosted by an incomplete hit-list
of size up to 15% of the number of all susceptible hosts. A simple and efficient way to
infect those leftover susceptible hosts is by uniform scanning. Therefore, we believe
uniform scanning is an indispensable elementary target discovery technique of active
worms.

4.3 Complex Scenarios

Finally, propagation characteristics of active worms employing a combination of three
different target discovery techniques were examined. In our simulation experiments,
active worms employing an incomplete hit-list followed by internally generated target
lists followed by uniform scanning as their target discovery techniques would sequen-
tially probe all those hosts in the hit-list prior to prior to sequentially probing all those

 Accelerating the Propagation of Active Worms 159

hosts in the target lists generated in process. Once those lists were exhausted, they
would start uniform scanning.

The above kind of active worm formed the basis of our 9 complex scenarios to be
simulated, which are summarized in Table 5. Both size of incomplete hit-list and
average size of internally generated target lists were candidate factors whose influ-
ences on a worm’s propagation characteristics were to be investigated. We have simu-
lated a limited number of scenarios. More scenarios could be investigated to deter-
mine the relationship between average time to infect 99% susceptible hosts and size
of hit-list and average size of internally generated target lists.

Table 5. A summary of the 9 complex scenarios simulated

Scenario Type Scenario Code Target Discovery Technique(s) Employed

Complex
H5%+I1+U
H5%+I2+U
H5%+I3+U

An Incomplete Hit-list with Size = 5% of the Number of
All Susceptible Hosts; Followed by Internally Generated
Target Lists with Average Size of 1, 2, or 3; Followed by
Uniform Scanning

Complex
H10%+I1+U
H10%+I2+U
H10%+I3+U

An Incomplete Hit-list with Size = 10% of the Number of
All Susceptible Hosts; Followed by Internally Generated
Target Lists with Average Size of 1, 2, or 3; Followed by
Uniform Scanning

Complex
H15%+I1+U
H15%+I2+U
H15%+I3+U

An Incomplete Hit-list with Size = 15% of the Number of
All Susceptible Hosts; Followed by Internally Generated
Target Lists with Average Size of 1, 2, or 3; Followed by
Uniform Scanning

Table 6. A summary of simulation results of the 9 complex scenarios

Scenario Type Scenario Code Average Time (in seconds) to Infect 99% Susceptible Hosts
Complex H5%+I1+U 54
Complex H5%+I2+U 34
Complex H5%+I3+U 18
Complex H10%+I1+U 55
Complex H10%+I2+U 36
Complex H10%+I3+U 19
Complex H15%+I1+U 53
Complex H15%+I2+U 35
Complex H15%+I3+U 18

According to the results (Table 6) from our simulation experiments, an additional

incomplete hit-list only accelerates a worm’s propagation slightly, compared to the
results of the last 3 scenarios in Table 4. Increasing size of the hit-list has little effect
on a worm’s rate of propagation. However, average size of internally generated target
lists has a great influence on a worm’s rate of propagation. The larger the average size
becomes, the faster the worm propagates. In other words, the results indicate the
combination of the three different target discovery techniques is not the best for at-
tackers taking into account the added effort they have to make to build the worm. We
suggest internally generated target lists with average size of 3 followed by uniform
scanning is the most effective and efficient among all approaches examined in this
paper to accelerate propagation of active worms.

160 X. Fan and Y. Xiang

5 Conclusions and Future Work

This paper provides a reasonably comprehensive but not exhaustive coverage of vari-
ous target discovery techniques that future active worms might employ to accelerate
their propagation. We derived from mathematical analysis that in order to accelerate a
worm’s propagation, we must try to let the worm infect the first 15% susceptible hosts
and enter its fast spread phase as soon as possible.

A hit-list lets a worm infect all susceptible hosts in the list in an extremely short
period. When followed by uniform scanning, an incomplete hit-list’s capability to
accelerate a worm’s propagation is diminishing while size of the hit-list is increasing.
When not followed by uniform scanning, internally generated target lists with average
size not greater than 3 cannot let a worm achieve infection of over 99% susceptible
hosts, no matter the number of initially infected hosts is boosted by an incomplete hit-
list of size up to 15% of the number of all susceptible hosts or not. However, when
followed by uniform scanning, internally generated target lists performed especially
well. The larger the average size becomes, the faster the worm propagates. An addi-
tional incomplete hit-list only accelerates the worm’s propagation slightly.

Our major contributions in this paper are first, we proposed a new discrete time de-
terministic model of active worms; and second, we suggested the combination of
target discovery techniques that can best accelerate propagation of active worms dis-
covered from results of the comprehensive simulations. The research is from attack-
ers’ perspective. We believe it can be very beneficial to understanding of propagation
mechanisms of active worms, and thus building effective and efficient defense sys-
tems against their propagation.

In order to counter super fast propagation of future active worms employing the
various combinations of multiple target discovery techniques, novel mechanisms need
to be discovered since current ones, due to their inherent drawbacks, respond too
slowly compared to propagation of even active worms employing single target dis-
covery technique.

References

1. Kienzle, D.M., Elder, M.C.: Recent Worms: A Survey and Trends. In: WORM 2003,
Washington D.C., USA, pp. 1–10 (2003)

2. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A Taxonomy of Computer
Worms. In: WORM 2003, Washington D.C., USA, pp. 11–18 (2003)

3. Moore, D., Shannon, C., Brown, J.: Code-Red: A Case Study on the Spread and Victims of
an Internet Worm. In: IMW 2002, Marseille, France, pp. 273–284 (2002)

4. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the
Slammer Worm. IEEE Security & Privacy 1, 33–39 (2003)

5. Shannon, C., Moore, D.: The Spread of the Witty Worm. IEEE Security & Privacy 2, 46–
50 (2004)

6. Staniford, S., Paxson, V., Weaver, N.: How to Own the Internet in Your Spare Time. In:
Security 2002, San Francisco, CA, USA, pp. 149–167 (2002)

7. Spafford, E.H.: The Internet Worm Program: An Analysis. ACM SIGCOMM Computer
Communication Review 19, 17–57 (1989)

 Accelerating the Propagation of Active Worms 161

8. Berghel, H.: The Code Red Worm: Malicious Software Knows No Bounds. Communica-
tions of the ACM 44, 15–19 (2001)

9. Ma, J., Voelker, G.M., Savage, S.: Self-Stopping Worms. In: WORM 2005, Fairfax, VA,
USA, pp. 12–21 (2005)

10. Xiang, Y., Zhou, W., Chowdhury, M.: A Survey of Active and Passive Defence Mecha-
nisms against DDoS Attacks (Technical Report), TR C04/02, School of In-formation
Technology, Deakin University, Australia (2004)

11. Xiang, Y., Fan, X., Zhu, W.: Propagation of Active Worms: A Survey. International Jour-
nal of Computer Systems Science and Engineering (accepted, 2008)

12. Ellis, D.: Worm Anatomy and Model. In: WORM 2003, Washington D.C., USA, pp. 42–
50 (2003)

13. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Ox-
ford University Press, Oxford (1991)

14. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis.
Springer, New York (2000)

15. Bailey, N.T.: The Mathematical Theory of Infectious Diseases and Its Applications. Haf-
ner Press, New York (1975)

16. Frauenthal, J.C.: Mathematical Modeling in Epidemiology. Springer, New York (1980)
17. Daley, D.J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge University Press,

Cambridge (1999)
18. Zou, C.C., Gong, W., Towsley, D.: Code Red Worm Propagation Modeling and Analysis.

In: CCS 2002, Washington D.C., USA, pp. 138–147 (2002)
19. Chen, Z., Gao, L., Kwiat, K.: Modeling the Spread of Active Worms. In: IEEE INFO-

COM, pp. 1890–1900 (2003)
20. Wang, Y., Wang, C.: Modeling the Effects of Timing Parameters on Virus Propagation.

In: WORM 2003, Washington D.C., USA, pp. 61–66 (2003)
21. Rohloff, K., Basar, T.: Stochastic Behavior of Random Constant Scanning Worms. In:

14th ICCCN, San Diego, CA, USA, pp. 339–344 (2005)
22. Sellke, S., Shroff, N.B., Bagchi, S.: Modeling and Automated Containment of Worms. In:

DSN 2005, pp. 528–537 (2005)
23. Zou, C.C., Towsley, D., Gong, W.: On the Performance of Internet Worm Scanning

Strategies. University of Massachusetts (2003)
24. Wagner, A., Dubendorfer, T.: Experiences with Worm Propagation Simulations. In:

WORM 2003, Washington D.C., USA, pp. 34–41 (2003)

Online Accumulation: Reconstruction of Worm
Propagation Path�

Yang Xiang, Qiang Li��, and Dong Guo

College of Computer Science and Technology, JiLin University
ChangChun, JiLin 130012, China

�������������	
�� � ��������	���	
�� �����������	���	
�

Abstract. Knowledge of the worm origin is necessary to forensic analysis, and
knowledge of the initial causal flows supports diagnosis of how network defenses
were breached. Fast and accurate online tracing network worm during its propa-
gation, help to detect worm origin and the earliest infected nodes, and is essential
for large-scale worm containment. This paper introduces the Accumulation Algo-
rithm which can eÆciently tracing worm origin and the initial propagation paths,
and presents an improved online Accumulation Algorithm using sliding detection
windows. We also analyzes and verifies their detection accuracy and containment
eÆcacy through simulation experiments in large scale network. Results indicate
that the online Accumulation Algorithm can accurately tracing worms and eÆ-
ciently containing their propagation in an approximately real-time manner.

Keywords: Worm, Propagation path, Online tracing, Containment.

1 Introduction

Network worms allow attackers to control thousands of hosts in a short time, launch
DDoS attacks, steal security information, and destroy critical data. Since 2001, Slam-
mer and other network worms[1,2] have brought unprecedented threat and damage to
the Internet. There is increasing threat of network worms against computer system se-
curity and network security.

Tracing worm’s attack paths (i.e., obtaining the propagation paths of network worm)
[3,5,6] can dig out the initial victims and the infect sequence of hosts. Even if only
partial path can be obtained, it still has significance in worm containment, evidence
collecting and investigating.

Worm containment works by detecting that a worm is operating in the network and
then blocking the infected machines from contacting further hosts. A key problem in
containment of scanning worms is eÆciently detecting and suppressing the scanning.
Since containment blocks suspicious machines, it is critical that the false positive rate
be very low[14].

In addition, the overwhelming majority of the attack traÆc originates from victims
of the attack, as opposed to the true source of the attack. While network terminals

� Supported by NSFC (60703023).
�� Corresponding author.

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 162–172, 2008.
c� IFIP International Federation for Information Processing 2008

Online Accumulation: Reconstruction of Worm Propagation Path 163

deploy corresponding defense gradually, the infected hosts may no longer participate
in the following attack. In contrast, worm source and the initial infected hosts may
be artificially controlled, these hosts are more danger, and can not be easily detected
or recovered. So, reconstruct worm source and the initial causal flows, makes worm
containment more e�ective.

However, the reaction time of eÆcient worm containment could be less than a few
hours or even minutes[12]. For example, Code-Red II worms infected more than
359,000 computers on the Internet in less than 14 hours[2]. Slammer worms probed
all four billion IPv4 Internet addresses for potential victims in less than 10 minutes[1].
Therefore, it is necessary to do research on online worm tracing approaches in complex
network environments, to trace network worm origins in a real-time manner.

In order to achieve online tracing, the following issues must be resolved: (1) shorten
the time required for reconstructing worm propagation paths in order to reduce compu-
tation complexity; and (2) guarantee reconstruction of paths continuously.

Contribution of this paper includes: (1) introduction of the Accumulation Algorithm
for reconstructing worm propagation paths, which can fleetly and eÆciently trace worm
attacking origins and initial propagation paths; (2) introduction of the online Accumula-
tion Algorithm using sliding windows, which can obtain worm origin and tracing initial
attack edges at the early days of worm propagating; and (3) deployment of a simulation
environment for worm propagation in large scale network, verify the performance of
our algorithm.

This paper is organized as follows. Section 2 introduces the related work of worm
detection and containment; section 3 gives some definitions and assumptions of the
following analysis; section 4 proposes the Accumulation Algorithm and prove its feasi-
bility through theoretical analysis; section 5 introduces the online Accumulation Algo-
rithm; section 6 verify the accuracy and eÆciency of our algorithm through simulation
experiments in large scale network; finally section 7 gives a conclusion.

2 Related Work

Worm containment has been studied in previous work. Network-based worm contain-
ment techniques can be classified into two major categories, that is, address blacklisting
and signature-based filtering. Besides network-based techniques, Vigilante et al.[15]
employs the collaboration among end hosts to contain worms by using self-certified
alerts. Shield et al.[16] installs host-based network filters that are vulnerability specific
and exploit generic once a vulnerability is discovered and before a patch is applied.
DOMINO et al.[7] builds an overlay network among active-sink nodes to distribute
alert information by hashing the source IP addresses. Worminator et al.[13] summa-
rizes portscan alerts in Bloom filters and disseminates them among collaborating peers.
Our work is focus on online tracing worm origin and initial propagation paths, help to
quickly and e�ectively deploy worm containment.

To date, merely a few approaches for o�ine tracing the sequence of hosts infected
by a worm are proposed. Xie et al.[5,11] o�ered a randomized approach that traces
the origin of a worm attack by performing a random walk over the hosts contact graph,
which is generated by collecting flow rates between potential victims during the worm’s

164 Y. Xiang, Q. Li, and D. Guo

propagation. Besides, aiming at the flow characteristics of mobile worm in wireless net-
works, Sarat et al.[9] improved random moonwalk algorithm so that the algorithm tends
to be e�ective continuously. Rajab et al.[3] presented a simple technique that uses the
history data acquired through a network telescope to infer the actual sequence of host
infections. A di�erent approach was proposed by Kumar et al.[6] where a Witty worm
was reversely engineered to recover the random scanning algorithm and corresponding
initial seeds. Finally, using protocol graph, Collins et al.[8] detect hit-list worm and
identify attack origin through monitoring the abnormal changes in various of protocol
graphs.

3 Problem Formulation

We consult some definitions in [5]: the host communications in network is defined as
a directed graph G �� V� E �, called host contact graph. Nodes of G is a tuple set
V � H � T , where H is all hosts in the network and T is time. The set of edges E
is a subset of V � V . Each direct edge e �� u� ts� v� te � in the host contact graph
represents a network flow, where � u� ts �� H � T represents source host and start
time, � v� te �� H � T represents destination host and finish time. An edge is defined
as an attack edge if it carries attack traÆc, whether or not it is successful in infecting
the destination host. An attack edge is defined as a causal edge if it corresponds to a
flow that successfully infects a normal host. All other edges in G besides attack edges
are called normal edge.

If two edges e1 �� u1� ts
1� v1� te

1 �, e2 �� u2� ts
2� v2� te

2 � in G satisfy the condition
u2 � v1 and te

1 � ts
2 � te

1 ��t (�t is a pre-determined time interval parameters), then e2 is
called e1’s successor, e1 is called e2’s precursor. All e’s precursors represent as: e1

pre, � � �,

e j
pre, � � �, ePRE(e)

pre , PRE(e) is the total number of e’s precursor. Similarly, all e’s successors
represent as: e1

suc, � � �, e j
suc, � � �, eS UC(e)

suc , S UC(e) is the total number of e’s successor.
Precursor and successor describe the relationships between the neighbor edges.

Under normal circumstances, we assume that there is only one worm origin in the
network, so the worm’s propagation process forms a tree (defined as causal tree). A
path in causal tree from the root to one of the leaves called a causal chain. Causal
tree is formed by all causal edges in G. The root of causal tree denotes the worm
attack origin, while causal edges from levels higher up in the causal tree denote the
initial attack sequences. Reconstructing worm origin and the initial attack sequences has
significance in restraining evolution of worm in investigating and collecting evidence.
After we know host contact graph G, our algorithm identifies a set of edges that, with
high probability, are edges from the top levels of the causal tree (i.e., initial attack
sequences after worm breaks out).

4 Accumulation Algorithm

Network worms can infect a large number of hosts in a very short period of time. This
requires worm tracing algorithms be able to obtain propagation path as soon as possible
in order to reduce loss. At the same time, traÆc data in the network are generated

Online Accumulation: Reconstruction of Worm Propagation Path 165

very fast, usually occupying a large portion of bandwidth. Consequently, it requires
that the time and space complexity of the algorithm to be near-linear. We use dynamic
programming to optimize the implementation of our Accumulation Algorithm. With
even millions of input size, the algorithm is able to complete in a very short time,
implying more time for the deployment of defense against possible future attacks for
the same worm.

4.1 Algorithm Specification

In order to continuously infect other hosts, after a host has been infected, it usually sends
more flows compare to former, while there is no significant increase in the number
of received flows[5]. Compare to a normal edge, a causal edge has more successors
while the number of precursor is similar on average. Motivated on this di�erence, we
propose a worm propagation path reconstruction method - Accumulation Algorithm.
First of all, we assign each edge with the same weight; then after K iterations of weight’s
’aggregation - cumulation’ (accumulation process), more weights tend to aggregate to
causal edges; finally we pick out top Z edges (TOP-Z) which have the largest weight to
trace initial propagation paths and reconstruct top levels of causal tree.

We define p(e� i) as the weight increment in the i-th accumulation process, then when

the algorithm is complete e has its total weight value p(e) �
K�

i�1
p(e� i). In fact each

accumulation process is a redistribution of the previous weight increment. Specifically,
each accumulation process evenly distributes the previous weight increment p(e� i�1) to
e’s every precursors e1

pre, � � �, e j
pre, � � �, ePRE(e)

pre , counting as a faction of the current weight
increment for each of the precursors. After K iterations, each edge’s weight increment is
continuously distributed to their precursors. In fact, the redistribution process of weight
increment is a weight accumulates process performed along the reverse causal chain.
The following snapshot illustrates the Accumulation Algorithm:

���� �� i � 0� p(e) � 0�0� p(e� 0) � 1�0�
���� �� i � i � 1�

p(e� i) �
S UC(e)�

j�1

p(e j
suc� i � 1)

PRE(e j
suc)

; (1)

p(e) � p(e) � p(e� i)�
���� �� 	
 i � K ��� ���� �� ���� ��� ���� ��

���� �� ���� �� ������ ��������� �� ������ �
 ������ ���

Adjust of the weight increment can be treated as a redistribution process, no ad-
ditional weight is generated. The redistribution process of weight increment is called
’aggregation’, and adding one’s weight increment to its total weight is called ’cumula-
tion’. In the accumulation process, a weight value aggregates to the top levels of causal
tree along reverse causal chain. This becomes our primary evidence used to discover
the initial attack sequences.

During the K iterations, one can completely generates the (i�1)-th weight increment
according to the i-th value. That is, the ’future’ weight increment relies on only the ’cur-
rent’ weight, instead of the ’past’ weight. So we can use dynamic programming method

166 Y. Xiang, Q. Li, and D. Guo

gradually calculate all the p(e� i) (e � E� 1 �� i �� K). Therefore, the time and space
complexity of weight redistribution is O(�E�). Accumulation Algorithm has K iterations
of weight redistribution, thus the total time complexity is O(K��E�). Experiments show
that ideal accuracy can be achieved even if K is very small. Therefore, it is roughly the
case that Accumulation Algorithm has a linear time complexity and space complexity.

4.2 Analysis and Prove

Accumulation Algorithm tries to identify initial causal edges with high accuracy and
reconstruct the causal tree. To illustrate the accuracy and feasibility of our algorithm,
we need to model the traÆc data and worm attack. Suppose a normal host sends A
flows in �t seconds, and an infected host sends B flows in �t seconds, including A
normal flows and B � A attack flows (clearly there is B � A). For an aggressive worm,
the number of sending flows increase significantly after a host is infected (i.e., B �� A).
But before and after infection, the number of flows a host received in �t seconds remains
almost unchanged (defined as C).

We define an edge e �� u� ts� v� te � as a malicious-destination edge if host v is
infected at (or before) time te, marked as em. Other edges is called normal-destination
edge, marked as en. Every normal-destination edge is a normal edge, but malicious-
destination edges include all causal edges, some normal edges and a part of non-causal
attack edges (v has been infected before time te). Assume that, on average, x normal
edges sent by a host in �t seconds are malicious-destination edges.

Next we prove that p(em� i) � p(en� i) for all 1 �� i �� K� em� en � E.

Proof. Using Mathematical Induction:

1. First, prove that p(em� 1) � p(en� 1):

p(em� 1) �
S UC(em)�

j�1

p((em) j
suc �0)

PRE((em) j
suc)

� B
C , p(en� 1) �

S UC(en)�
j�1

p((en) j
suc �0)

PRE((en) j
suc)

� A
C ,

∵ p(em� 1) � p(en� 1) � B�A
C � 0, ∴ p(em� 1) � p(en� 1).

2. Assume p(em� i) � p(en� i) when 0 � i � K, prove that p(em� i � 1) � p(en� i � 1):

p(em� i � 1) �
S UC(em)�

j�1

p((em) j
suc �i)

PRE((em) j
suc)

� A�x
C � p(en� i) � B�A�x

C � p(em� i),

p(en� i � 1) �
S UC(en)�

j�1

p((en) j
suc �i)

PRE((en) j
suc)

� A�x
C � p(en� i) � x

C � p(em� i),

Thereinto p(em� i) �

�

e�E
p(em�i)
�

e�E
1 , p(en� i) �

�

e�E
p(en �i)
�

e�E
1 .

∵ p(em� i � 1) � p(en� i � 1) � B�A
C � p(em� i) � 0, ∴ p(em� i � 1) � p(en� i � 1).

So we have proved that p(em� i) � p(en� i) for all 1 �� i �� K� em� en � E.

From the above proof, we can get that p(em� i) � p(en� i) is proportional to B � A. For
aggressive worm p(em� i) �� p(en� i) because of B �� A. While the accumulation
process is proceeding, p(em� i) � p(en� i) increases gradually, and the weight advantage
of malicious-destination edges grows. Furthermore, because the accumulation process
follows the reverse order of causal chain, initial causal edge will get more weight. Thus
these early propagation paths can be highlighted from all the edges.

Online Accumulation: Reconstruction of Worm Propagation Path 167

However, malicious-destination edges include not only causal edge, but also some
of the normal edge and non-causal attack edge. In the early phase of worm propagation,
there is not much infected host, so the vast majority of malicious-destination edges are
causal edges. In the late phase, almost all the vulnerable hosts in the network have
been infected – the result being that the amount of normal edges and non-causal attack
edges in all malicious-destination edge increase. Therefore, tracing worm in the early
phase has a lower false negative rate, and thus is helpful for detecting worm as soon as
possible, saving more time for defense against continues spread of the worm.

5 Online Accumulation Algorithm

With online tracing, propagation paths can be detected in the initial phase (e.g. 30 min-
utes) after the worm breaks out. As a result, inhibition and defense can be launched in
the earlier stage, reducing some loss otherwise.

In the related works, we mention that enabling a detection algorithm to execute in
real-time usually exploits sliding windows [4,17]. The Accumulation Algorithm is able
to promptly obtain the detection results and thus provides an ameliorate condition for
online tracing. Based on the o�ine Accumulation Algorithm, we propose an online
tracing algorithm also based on sliding window, as follow:

���� � i � 0�
���� � !����� ��

�� "�� #�$�� ����� � �����"�� �������

$� $�� ����� ����$ %i ����� $��� ��

�� "���

���� � �&���� $� '���(������ '�����$(�� %i� �)��� ���*i�

���� � !�(���� �����i)+ �&������ � �"��� #�$ $� $��$��

#���$ ������
��(���*i
�

�����i�1 ��������� ������ ������

��� ��� �����i�

���� , i � i � 1� ����� �����
��(���� � �
�� � �����"�

This algorithm has many advantages: First, it is triggered every R seconds, thus worm
can be detected as soon as possible. Second, each run needs to collect traÆc data only
within the recent S seconds – a large amount of overhead is avoided and improves its
eÆciency. One disadvantage of this algorithm is relatively low detection accuracy cased
by the fact that it relies on only partial data.

6 Simulation Experiments

This section is constructed as follows. Section 6.1 gives the performance metrics; sec-
tion 6.2 figure out our simulation methodology; section 6.3 discuss the parameters’
influence on the performance of Accumulation Algorithm; section 6.4 discuss the pa-
rameters’ influence on the performance of the online Accumulation Algorithm; section
6.5 illustrate e�ect of worm containment by the online Accumulation Algorithm.

6.1 Evaluation Methodology

To quantitatively evaluate the performance of Accumulation Algorithm, first we con-
sider the following two metrics:

168 Y. Xiang, Q. Li, and D. Guo

Attack edge Accuracy (AA) � # attack edge in TOP-Z
Z ;

Causal edge Accuracy (CA) � # causal edge in TOP-Z
Z ;

Further more, Accumulation Algorithm is designed to identify worms initial attack
sequences. In the following experiments the earliest 10% causal edges (defined as INIT-
10%) are considered as ’initial attack sequence’. Then there are two more metrics to
evaluate the ability of tracing initial causal edges:

False Negative (FN) �
edge in INIT-10% but not in TOP-Z

causal edge ;

False Positive (FP) �
edge in TOP-Z but not in INIT-10%

non-causal edge ;

6.2 Simulation Methodology

In the worm detection works, experimental data usually produced by mixing real-world
network traÆc and man-made worm propagation flows [5,8,9]. Using pre-captured real
network flows as the background traÆc makes repeating experiments more convenient.
Background flows often captured from main switches or routers. Worm attack flows are
added artificially base on the real-world background data.

We use a part of NZIX II[10] trace from WAND as our background traÆc data.
This is a 9000 seconds long GPS-synchronized IP header traces captured at the New
Zealand Internet Exchange, including exchange flows between 6 intranets, involving
a total of 0.1 million hosts and 3 million flows. These flows are captured through the
SPAN port of router, only containing summary information of every flow, but not in-
cluding the specific contents of packages. Traces contain TCP, UDP and ICMP flows,
being anonymized by mapping the IP addresses into network 10.X.X.X.

We let the worm break out at second 900. After a host has been infected, it sends
an attack flow to a randomly chosen host every 30 seconds. A destination host will
be infected if it is a vulnerable host, otherwise it won’t. In the following experiments,
we choose 0.1 as the fraction of vulnerable hosts in the network. Some information of
experimental data is shown in Table 1. From Table 1 and Fig. 1 we can seen that, all
the vulnerable hosts have been infected after 5000 seconds, and 41% of flows are attack
flows.

Table 1. Three di�erent worm scanning rates

Total flows (million) 5.08
Fraction of attack edges 0.41
Fraction of causal edges 0.0024
Fraction of vulnerable hosts 0.1
Fraction of infected hosts 0.100

When considering given parameter’s e�ect to the algorithm performance, we only
allow the corresponding parameter to change. Without special note, the initial values of
the parameters in the experiment are shown in Table 2.

Online Accumulation: Reconstruction of Worm Propagation Path 169

0 2000 4000 6000 8000
0

0.02

0.04

0.06

0.08

0.10

time (seconds)

fr
ac

tio
n

of
 in

fe
ct

ed
 h

os
t

attack
start

t = 900

Fig. 1. Fraction of infected host along with
time

3 6 9 12 15 18 21
0

0.2

0.4

0.6

0.8

1

K

D
et

ec
t A

cc
ur

ac
y

AA
CA

Fig. 2. K vs. AA, CA

Table 2. The initial values of parameters

Number of accumulation process: K 10
Time interval on the definition of precursor: �t (seconds) 1000
Number of edges in the result set: Z 100
Running duration of online algorithm: R (seconds) 480
Size of sliding window: S (seconds) 2400

6.3 Preferences of Accumulation Algorithm

Parameter K. Fig. 2 shows the impact of K on AA and CA. Algorithm performs the
best when K�9, while AA and CA are both the highest. From this we can see that a good
result only requires a few number of accumulation process. From Fig. 2 we also find that
when K continuous increases, its accuracy declines a little. Because while accumulating
along the reverse order of causal chain, excessive iterations of accumulation process
makes the weight more likely to be aggregated to some normal edges before the worm
breaks out, then more non-causal malicious-destination edge will enter TOP-Z.

400 800 1200 1600 2000
0

0.2

0.4

0.6

0.8

1

Delta t (seconds)

D
et

ec
t A

cc
ur

ac
y

AA
CA

Fig. 3. �t vs. AA, CA

400 800 1,200 1600 2000
0.092

0.094

0.096

0.098

0.1

Delta t (seconds)

F
al

se
 N

eg
at

iv
e

Fig. 4. �t vs. FN

400 800 1200 1600 2000
0

0.5

1

1.5

2
x 10

−5

Delta t (seconds)

F
al

se
 P

os
iti

ve

Fig. 5. �t vs. FP

Parameter �t. Fig. 3 shows the impact of �t on AA and CA. When �t is increasing,
detection accuracy climbs up but finally drops slightly. The accuracy is very low when
�t is very small, because reverse accumulation is more likely to arrive at a host that
has no precursor in the previous �t seconds, making some weights lost, reducing the
possibility of pooling the weight into the top levels of causal tree.

170 Y. Xiang, Q. Li, and D. Guo

Larger�t makes the weight have more chance to accumulate to the top levels of causal
tree, so detection accuracy will increase along with �t. But AA and CA both lowered
down when continuous increase �t. This is because a wider �t indicates more precursors
– weight has higher possibility to be aggregated to some normal edges before the worm
breaks out. We can also discover this from Fig. 4 and Fig. 5. The FP and FN are both
increasing along with �t, because of more normal edges are selected into TOP-Z.

From Fig. 2 and Fig. 3 we can see that, CA is usually very close to AA. This is
because as the accumulation process proceeds, weights gradually accumulate to the
initial malicious-destination edges. While at the initial phase of worm breaks out, there
is not many infected host, the vast majority of malicious-destination edge are causal
edges.

6.4 Preferences of Online Accumulation Algorithm

For an online algorithm, we hope its detect duration can be very short, so that worm
propagation can be detected as soon as possible. Fig. 6 and Fig. 7 shows the impact of
window size S and running duration R on detection accuracy. Using only partial data
is not only an inevitable demand and benefits (reducing running time and memory con-
sume) but also is a shortage (lower accuracy rate) for the online algorithm. As can be
seen in Fig. 6 and Fig. 7, a bigger size of window leads to a higher detection accuracy,
but there is only a little di�erence between the accuracy of S�2400 and S�3600. In-
creasing the running duration enables the algorithm accuracy to be increased. This is
because when merging two trees form adjacent slide windows, more edges in the over-
lapping time interval will cause more conflict edges. Yet the change of accuracy with
running duration is gentle, launching the Accumulation Algorithm every 60 seconds can
achieve 70% accuracy.

120 240 360 480 600
0

0.2

0.4

0.6

0.8

1

R (seconds)

A
tta

ck
 e

dg
e

A
cc

ur
ac

y

S=1200
S=2400
S=3600

Fig. 6. R, S vs. AA

120 240 360 480 600
0

0.2

0.4

0.6

0.8

1

R (seconds)

C
au

sa
l e

dg
e

A
cc

ur
ac

y

S=1200
S=2400
S=3600

Fig. 7. R, S vs. CA

6.5 E�ect of Containment

Fast and accurate tracing worm source and initial propagation paths is essential to con-
tain worms at the Internet scale. From Fig. 7 we can see that, when the parameters’
value of online Accumulation Algorithm are R � 120, S � 2400, Z � 100, CA is at least
60%. To illustrate the e�ects of worm containment, we conduct the following simula-
tion experiments.

We add h infected hosts to the blacklist every 120 seconds (h � minimal �60, total�
0.002�). Which ’total’ is the amount of infected hosts (excluding hosts already in the

Online Accumulation: Reconstruction of Worm Propagation Path 171

0 2000 4000 6000 8000
0

0.02

0.04

0.06

0.08

0.1

t (seconds)

F
ra

ct
io

n
of

 in
fe

ct
ed

 h
os

t

worm
(containment)
worm

Fig. 8. Fraction of infected host at time t

0 2000 4000 6000 8000
0

2

4

6

t (seconds)

flo

w
 (

m
ill

io
n)

no worm
worm(containment)
worm

Fig. 9. Total number of flows before time t

blacklist), ’minimal�x, y�’ return the smaller numerical value of x and y. Fig. 8 and Fig.
9 shows the simulation result. We can see thus containment delays worm spread about
500 seconds, while it reduces the network traÆc by 10%.

7 Conclusions

Online tracing the evolution of a worm outbreak reconstructs not only patient zero (i.e.,
the initial victim), but also the infection node list in evolution process. Even if the
proportion trails can be captured, it has significance in restraining evolution of worm in
investigating and collecting evidence.

Tracing network worm propagation from the initial attack can inhibit continuous
spread of the worm, ensuring that no more hosts is infected by the worm, and providing
basis for the determination of worm attack origins. Experiment results indicate that the
Accumulation Algorithm can achieve 90% detection accuracy.

References

1. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the Slam-
mer Worm. IEEE Security and Privacy (August 2003)

2. Moore, D., Shannon, C., Cla�y, K.: Code-Red: A Case Study on the Spread and Victims
of an Internet Worm. In: Proceedings of Second ACM SIGCOMM Workshop Internet Mea-
surement, pp. 273–284 (2002)

3. Rajab, M.A., Monrose, F., Terzis, A.: Worm evolution tracking via timing analysis. In: Pro-
ceedings of the 2005 ACM Workshop on Rapid Malcode, WORM 2005, November 11, 2005,
pp. 52–59. ACM Press, New York (2005)

4. Peng, P., Ning, P., Reeves, D.S., Wang, X.: Active Timing-Based Correlation of Perturbed
TraÆc Flows with Cha� Packets. In: ICDCS Workshops 2005, pp. 107–113 (2005)

5. Xie, Y., Sckar, V., Maltz, D.A., Reiter, M.K., Zhan, H.: Worm Origin Identification Using
Random Moonwalks. In: Proceedings of IEEE Symposium on Security and Privacy, May
2005, pp. 242–256 (2005)

6. Kumar, A., Paxson, V., Weaver, N.: Exploiting Underlying Structure for Detailed Recon-
struction of an Internet Scale Event. In: Proceedings of ACM IMC (October 2005)

7. Yegneswaran, V., Barford, P., Jha, S.: Global Intrusion Detection in the DOMINO Overlay
System. In: Proceedings of Network and Distributed System Security Symp (NDSS) (2004)

8. Collins, M.P., Reiter, M.K.: Hit-list worm detection and bot identification in large networks
using protocol graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 276–295. Springer, Heidelberg (2007)

172 Y. Xiang, Q. Li, and D. Guo

9. Sarat, S., Terzis, A.: On the detection and origin identification of mobile worms. In: Pro-
ceedings of the 2007 ACM Workshop on Recurring Malcode, WORM 2007, Alexandria,
Virginia, USA, November 02, 2007, pp. 54–60. ACM, New York (2007)

10. WAND Network Research Group. 2000 WAND WITS: NZIX-II trace data (July 2000),
�����������	
�	������	�
	�����������������	���

11. Xie, Y., Sekar, V., Reiter, M.K., Zhang, H.: Forensic Analysis for Epidemic Attacks in Feder-
ated Networks. In: Proceedings of the IEEE International Conference on Network Protocols
(October 2006)

12. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Internet Quarantine: Requirements for
Containing Self-Propagating Code. In: Proceedings of 22nd Conf. Computer Comm. (2003)

13. Locasto, M.E., Parekh, J., Keromytis, A.D., Stolfo, S.: Towards Collaborative Security and
P2P Intrusion Detection. In: Proceedings of Sixth Ann. IEEE SMC Information Assurance
Workshop (IAW), June 2005, pp. 333–339 (2005)

14. Weaver, N., Staniford, S., Paxson, V.: Very Fast Containment of Scanning Worms. In: Pro-
ceedings of Usenix Security Symp., pp. 29–44 (2004)

15. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vig-
ilante: End-to-End Containment of Internet Worms. In: Proceedings of 20th ACM Symp.
Operating Systems Principles (SOSP) (October 2005)

16. Wang, H.J., Guo, C., Simon, D.R., Zugenmaier, A.: Shield: Vulnerability-Driven Net-
work Filters for Preventing Known Vulnerability Exploits. In: Proceedings of 2004 ACM
Conf. Applications, Technologies, Architectures, and Protocols for Computer Comm (SIG-
COMM), pp. 193–204 (2004)

17. Sta�ord, S., Li, J., Ehrenkranz, T.: Enhancing SWORD to detect 0-day-worm-infected
hosts. SIMULATION: Transactions of the Society for Modeling and Simulation Interna-
tional 83(2), 199–212 (2007)

http://wand.cs.waikato.ac.nz/wits/nzix/2/nzix-ii.php

HRS: A Hybrid Replication Strategy for

Exhaustive P2P Search

Hanhua Chen1, Hai Jin1, Xucheng Luo2, and Zhiguang Qin2

1 Huazhong University of Science and Technology, Wuhan, 430074, China
2 University of Electronic Science and Technology of China, Chengdu, 6110054, China

hjin@hust.edu.cn

Abstract. Successful search and versatile query support are two impor-
tant requirements for peer-to-peer (P2P) search applications. Replication
strategy is an effective approach to improve the search performance of
unstructured P2P systems. However, existing replication strategies ei-
ther adapt only to popular queries or incur excessive replication cost for
unpopular queries. In this work, we propose HRS, a hybrid replication
strategy to improve the search performance of unstructured P2P net-
works. By combining a query popularity independent strategy with the
square-root strategy, HRS can effectively and efficiently handle both kind
of queries, popular or not. We evaluate this design through mathemat-
ical proof and comprehensive simulations. Results show that HRS out-
performs existing replication-based search paradigms in terms of search
performance and resource consummation.

1 Introduction

Since the emergence of peer-to-peer (P2P) [1,2,3] file sharing systems, such as
Napster [4] and Gnutella [5], millions of users started to harness the desired data
on the Internet with P2P tools. Recently, large scale P2P information sharing
applications such as DistriWiki [6], Decentralized Wiki engine [7], and Peer-
to-Peer Web [8,9] have attracted much attention. For this kind of application,
both successful search and versatile query language support are important re-
quirements. To guarantee successful search, unstructured P2P systems need ex-
haustive search techniques, where each < item, query > (In this paper, we use
“item”, “data”, “file”, and “file metadata” interchangeably) pair can be eval-
uated with high probability and at low cost. Since network items can be in a
heterogeneous format, such as html, XML, and other complex web objects, ver-
satile query styles, such as keyword matching and XQuery [10], are preferable
for a system design.

Current P2P systems mainly use three search schemes: flooding-based search-
ing [11,1], Distributed Hash Table (DHT) looking up [12,13,14], and hybrid P2P
searching [15,16,17]. In the first scheme, queries are flooded into an unstruc-
tured P2P network, suffering from excessive network traffic. DHT maintains a
global index for item locating, guaranteeing a perfect successful rate while suf-
fering from the problem of “exact match”. Although some extensions based on

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 173–184, 2008.
c© IFIP International Federation for Information Processing 2008

174 H. Chen et al.

DHT are proposed to support complex queries, existing schemes incur unac-
ceptable communication overheads [18]. Based on the observation that flooding
is efficient for popular items while DHT is more suitable for rare items, Hybrid
P2P [15,16,17] search schemes are proposed. A hybrid P2P network combines
the unstructured protocol with the DHT global index, and performs a query by
either flooding or DHT looking up according to the item’s popularity.

Unstructured P2Ps are naturally the best candidate for supporting versatile
queries because the matching operations can be evaluated at the nodes that
store the relevant items. The first unstructured P2P protocol, Gnutella, is not
scalable due to the adoption of flooding query scheme. An efficient approach to
improve the search performance of unstructured P2Ps is to utilize replication
strategies. The existing replication strategies can be divided into two categories.
The first type is the query popularity aware strategies. The number of repli-
cas is determined by the query’s popularity. Existing research [11] claimed that
the square-root replication strategy has the optimal expected search size (ESS),
which is the average number of random probes required to solve a query. How-
ever, this strategy is inefficient for solving “insoluble queries”, the queries for rare
and non-existent items. For non-existent items, the query stop rule is crucial for
reducing the search cost. Obviously, it can not guarantee the query to be searched
exhaustively. The second type is independent of the popularity of a query, such
as RWPS [19], Bubblestorm [20], and RandRep [21]. This kind of strategy de-
ploys an optimal number of item replicas randomly in a P2P network to achieve
probabilistically exhaustive search, without exploiting the query’s popularity to
reduce the query overhead. For example, in Bubblestorm, each item, popular or
not, has the same number of replicas, which is determined by the network size.

The key issues for replication-based probabilistically exhaustive search in un-
structured P2P networks is how to estimate the optimal number of replicas and
disseminating the replicas optimally throughout the network. In this paper, we
propose HRS, a hybrid replication strategy to improve the search performance
of unstructured P2P networks. By combining a query popularity independent
strategy with the square-root strategy, HRS can effectively handle queries for
both popular and rare items. We conduct comprehensive simulations to evaluate
this design. Results show that HRS outperforms existing techniques in terms of
search performance and search cost.

The remainder of the paper is organized as follows. In Section 2, we review
related work. The model and the problem statement are given in Section 3.
Section 4 presents the design of HRS. We evaluate the performance of HRS in
Section 5. We conclude in Section 6.

2 Related Work

Without centralized index servers, nodes in a decentralized P2P system have
to cooperate with each other to perform a search for desired data items. Ex-
isting systems utilize replication strategies to improve the search performance.
Existing replication strategies in unstructured P2P networks can be divided into

HRS: A Hybrid Replication Strategy for Exhaustive P2P Search 175

two categories, the query popularity aware replication approach and the query
popularity independent replication strategy.

2.1 Query Popularity Aware Replication

In this kind of strategy, the number of replicas is related to the query rates. Let
ri denote the number of replicas of item i.The sum of the replica amounts is R =∑m

i=1 ri. Let qi denote the query rate of item i, which is the fraction of all queries
that are issued for item i. The number of replicas in this strategy is ri = f(qi). Two
natural strategies among existing schemes are uniform and proportional strate-
gies, while in the uniform replication strategy, all items are equally replicated,
that is ri = R/m. In the proportional replication strategy, the number of repli-
cas is proportional to the query rates, that is ri = R × qi. Cohen et al. [11] have
studied the two query-rate based strategies. Their analysis results show that the
above two strategies are not optimal as to the expected number of random probes
(ESS). Another result is that the above two strategies have the same ESS and any
strategies between them are better than them as to the ESS. Cohen et al. then
propose the square-root replication (SRR), where the number of replicas is pro-
portional to the square-root of the query rates. In SRR, the number of replicas
is ri = λ

√
qi, where λ = R/

∑m
i=1

√
qi. They also prove that SRR is optimal as

to ESS. In short, as to the expected search size, uniform strategy is the same as
proportional strategy. The square-root replication strategy achieves optimal ex-
pected search size. The average search size of uniform replication strategy and
proportional replication strategy is given by

E [Tuniform] = E [Tproportional] =
Nm

R
(1)

The ESS of SRR is given by

E [Toptimal] =
R

N
(

m∑
i=1

√
qi)2 (2)

Although square-root replication can achieve optimal expected search size, it
is only practical for “soluble queries”. In SRR, the “soluble queries” are queries
which can be solved within the given maximum search size. However, defining
the maximum search size is not easy. For items with a small number of replicas,
to guarantee exhaustive search, the number of random probes is very big. SRR
refers to queries for these kinds of items as “insoluble queries”, which can not be
solved efficiently by SRR. Furthermore, how to divide popular and unpopular
queries is also not clear. Thus, exhaustive search can not be guaranteed with
high probability at low cost in this scheme.

2.2 Query Popularity Independent Replication

Recently, the query popularity independent replication strategy has attracted
much attention. All items are equally replicated regardless of the popularity

176 H. Chen et al.

of the related queries. For file search, queries are replicated to some random
nodes. The well-chosen parameters guarantee the collision of item replica and
query with high probability. This idea is inspired by the birthday paradox [22].
However, since item and query replications are two independent processes, the
birthday paradox can not be directly used to design the related parameters.

RWPS [19] firstly propose this kind of replication in a Gnutella network. To
implement the installation of replicas, RWPS employs random walk to sample
some random nodes. RWPS can guarantee exhaustive search with high prob-
ability. However, random walk is not fault-tolerant, a failed node in the path
could reduce replica amount. Thus, the search success probability can not be
guaranteed. On the other hand, random walk has long latency.

To overcome the shortcoming of RWPS, Terpstra et al. propose Bubblestorm
[20] to achieve probabilistic and exhaustive search. Bubblestorm employs ran-
dom multi-graph to connect peers. The related joining and leaving protocols are
designed to keep the attributes of random multi-graph. To improve the perfor-
mance of message propagating, they also design a new algorithm-bubblecast to
distribute replicas and queries, which is the combination of both random walk
and flooding.

RandRep [21] is another implementation of query rate independent replica-
tion. In this scheme, a lightweight DHT is employed to support network size
estimation and random node selection. All items have equal numbers of replicas.
To guarantee the search success with high probability, the number of replicas is
carefully determined. Let r and q denote the numbers of item replicas and query

replicas, respectively. If rq ≥ N

(
(1 + ε ln N) +

√
(1 + ε lnN)2 − 1

)
, the prob-

ability of two kinds of replicas encountering in at least one node is P ≥ 1−N−ε,
where ε > 0 is a constant. For current P2P network size, it is suitable that the
value of rq is N (2 + lnN). If the traffic of each query and item replica is the
same, the value of r and q is

√
N(2 + ε lnN), that is to say r = q = O(

√
N ln N).

Query popularity independent strategy can achieve exhaustive search with
high probability. Since the query popularity is not considered in this strategy, it
is not optimal for popular queries in terms of search cost. The drawback of such
strategy is very clear. Uniformly replicating all items including the infrequently
queried ones, is inefficient. On the contrary, for the popular queried items, a
small number of query replicas can efficiently reduce the overall cost of the
search system.

3 System Model and Problem Statement

The model is related to the overlay network, item replicas, and queries. The
network is composed of N nodes. Several approaches for obtaining the network
size N have been proposed, for example [23,24]. There are m items shared in the
network. Each item, i, is replicated at ri sites. The vector of replica amounts is
(r1, r2, . . . , rm). The sum of the replica amounts is R =

∑m
i=1 ri. The query rate

vector for items is (q1, q2, . . . , qm), where qi is the query-rate for item i, which

HRS: A Hybrid Replication Strategy for Exhaustive P2P Search 177

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

100

200

300

400

500

Query rate

E
xp

ec
te

d
se

ar
ch

 s
iz

e

QIR
SRR

Fig. 1. Search size comparison for QIR and SRR

is the fraction of all queries issued for item i. The rate qi is normalized, that is∑m
i=1 qi = 1. If all items are equally replicated, the number of replicas is denoted

as r. Correspondingly the query amounts for specific items are equal, which is
denoted as q. In this kind of P2P sharing network, we consider the random search
method adopted in [11]. This random search method sends query messages to
random nodes in the network until the query is answered or the search reaches
the maximum size. There are several approaches to achieve the random nodes,
for example, the combination of random multi-graph with bubblecast in Bub-
blestorm [20] and the RandRep scheme which combines a lightweight DHT with
an unstructured P2P overlay to address random peer sampling [21].

In this paper, we propose HRS, a hybrid replication strategy to improve the
search performance of unstructured P2P networks. HRS performs an exhaustive
search, which probabilistically guarantees that the application’s query evalua-
tor runs on a peer containing a replica of the related item. By combining a
query popularity independent strategy with the square-root strategy, HRS can
effectively handle queries for items, popular or not. We address the following
problem. What is the efficient and practical replication strategy for a query
issued in unstructured P2P networks regardless of how popular it is?

4 HRS Replication

For real systems, popular queries, unpopular queries, and even queries for non
existent items should all be considered. Square-root replication strategy is just
practical for popular queries. As for unpopular queries and queries for non ex-
istent items, query rate independent replication (QIR) strategy is better than
square-root replication strategy. Figure 1 illustrates the search size comparison

178 H. Chen et al.

of QIR and SRR in a 50,000 node network. At the query rate about 0.27, QIR
and SRR have the same search size. Prior to that, QIR has a smaller search size.
After that, SRR performs better. Therefore, it would be reasonable to combine
SRR and QIR to meet the requirements of real systems. Based on the observa-
tion, we propose HRS, which is a combination of SRR and QIR. The challenge
here is how to implement the effects of both SRR and QIR.

4.1 HRS Strategy

Replication strategy is an allocation of replicas for each item. The objective is
to improve the related performance metrics. In order to consider both query and
item popularity, the following allocation function is given.

ri = f(N, qi) (3)

For an item with very small qi, to guarantee exhaustive search, the fraction
of all nodes which have a replica of item i should be bigger than a given thresh-
old. Under this condition, this item can be searched within a given maximum
search size with high probability. If the maximum search size is reached while
the item is not found, it is the case that there are no such item in the network
with high probability. In the QIR strategies, each item has an equal number of
replicas to guarantee the exhaustive search. Thus, this value can be treated as
the minimization of the number of replicas in HRS. That is given by

rmin =
√

N (2 + lnN) (4)

On the other hand, the query rate should be considered. Obviously, we should
incorporate the square-root strategy in HRS. There is a critical point of the query
rate. At this point, we have the below equation.

√
N (2 + lnN) =

R × √
qi∑m

j=1

√
qj

(5)

Then, the critical point of the query rate is

qc =
N(2 + lnN)(

∑m
j=1

√
qj)2

R2
(6)

Therefore, for items with query rate bigger than qc, the square-root strategy is
employed. Other items should have rmin replicas.

According to above analysis, the HRS replica allocation function is given by

ri =

{√
N(2 + lnN) where qi < qc

R×√
qi∑

m
j=1

√
qj

where qi ≥ qc
(7)

HRS: A Hybrid Replication Strategy for Exhaustive P2P Search 179

4.2 Implementation of HRS

HRS employs reactive operations to replicate items. Two actions trigger the
replication operation. The first action is node joining. At this point, there are no
replicas of items shared by this node. The corresponding query rates are zero,
which is obviously smaller than the critical point pc. Therefore, a minimum
number of replicas should be distributed in the network. The new node replicate
their items to rmin random nodes. This operation guarantees an exhaustive
search with high probability. The second action is item querying. A query to
item F may succeed or fail. If s ≤

√
N(2 + lnN) probes are required to get

the answer, s replicas of item F are added into the network after the search.
Otherwise, the query fails, which implies that the queried item is non existent.
This operation is used to maintain the square-root replication strategy.

We adopt random walk to implement HRS. Random walk is an efficient ap-
proach to solve problems in random networks, for example, resource search [25],
overlay construction [26]. Another important functionality of random walk is
random node sampling which is the base for random replication. As to the
sampling efficiency, it is optimal for sampling r random nodes at the cost of
r messages. Unstructured P2P networks have two important attributes related
to node sampling. The first is that the topology is modeled as a random graph.
Usually, the Poisson random graph and power-law random graph [27] are used
to model unstructured P2P networks. The second attribute is that P2P systems
are dynamic system. Nodes can only maintain their neighborhood information
efficiently. Due to the two attributes, random walk is a reasonable approach for
sampling random node subset. HRS employs random walk to implement optimal
random node subset sampling.

For arbitrary node vi ∈ V , Γ (vi) is the set of nodes which connect to node vi

and di = |Γ (vi)| is the degree of node vi. Random walk on a graph is a sequence
of nodes, for example v0, v1, · · · , vi, vj , · · ·. If the position is vi at time t, the
probability of reach vertex vj at time t + 1 is:

pij =
{

1/di if i �= j and j ∈ Γ (vi)
0 otherwise (8)

Random walk on a graph is a Markov chain. The corresponding probability
transition matrix is P = {pij}. The initial distribution is denoted as π(0). The
distribution at time t is π(t). If the Markov chain is irreducible, finite, and
aperiodic, this Markov chain has unique stationary distribution [28]. Random
walk on P2P networks is corresponding to this kind of Markov chain. If the
graph is regular, random walk reaches each node with equal probability after the
Markov chain converging. However, P2P networks are not regular graph, simple
random walk can not obtain uniform sampling. Two alternatives are proposed
to address uniform sampling in non-regular graph. The first is the Maximum
Degree random walk (MD), in which the graph is converted to regular graph
by adding self-loop to low degree nodes. The second is the Metropolis-Hasting
random walk (MH). The transition probability of MH is given by

180 H. Chen et al.

pij =

⎧⎪⎨
⎪⎩

1/ max(di, dj) if i �= j and j ∈ Γ (i)
1 −

∑
j∈Γ (i)

pij if i = j

0 otherwise

(9)

In HRS, MH is used to sample nodes.The time from the initial distribution
to the stationary distribution is called mixing time. Although MD is very sim-
ple, its mixing time is bigger than that of MH [29]. The existing random walk
based node sampling algorithms are one random node each time. For sampling a
random subset, it is straightforward to sample multiple times. Due to excessive
message overhead and big latency, however, this strategy is not practical. Accord-
ing to recently research results, we find that the efficiency of random walk-based
sampling can be improved. For MH random walk on a random graph, continuous
s steps obtain s random nodes. After random walk on a random graph converges,
the successive s steps obtain s random nodes [26]. For random walk start from
node A, it reaches node B after convergence. As to A, B is a random node.
According to the reverse random walk path principle [30], A is also a random
node for B. Since s step random walk from B is a sampling of s random nodes,
s step random walk from A is also a sampling of s random nodes. That is to say,
s step random walk from arbitrary node obtains s random nodes.

HRS can efficiently solve queries for any items. In HRS, the baseline of the
replica amount for any item is r. This setting guarantees all queries can be solved
or ended with at most

⌈√
N(2 + lnN)

⌉
probes. For popular queries, the reactive

replication operation inserts additional replicas into the network. As the replica
amount increases, the search size decreases. However, the search cost for each
query does not increase.

5 Performance Evaluation

In this section, we present the performance metrics, experimental setup, and
performance evaluation in our simulations.

5.1 Simulation Methodology

Many metrics are related to the search performance, for example, search success
probability, search size, search traffic, search cost, and query delay. In HRS,
the replica amount guarantees the search success with high probability. As for
queries for non existent items, the search stop rule is the maximum search size.
Therefore, it is not necessary to measure the search success probability. In the
design, the random probe is used to search items, which is also adopted in the
square-root replication strategy [11]. In the evaluation of HRS, we are mainly
concerned with search size and search cost. The search size is the number of
random probes until the termination of the search. The search cost is averaged.
For some item, the number of replicas is x. The number of queries for this item
is y. If the sum of probes is p, the search cost is (x + p)/y.

HRS: A Hybrid Replication Strategy for Exhaustive P2P Search 181

In the simulation, networks with 10,000, 300,000, 500,000, 700,000, 900,000,
and 110,000 nodes are constructed. Initially, each item is treated as a new item
and uniformly replicated at

⌈√
N(2 + lnN)

⌉
random nodes. Queries for these

items are put into the network to trigger the replication. The measurements of
real P2P systems show that the popularity of queries follow a Zipf-like distri-
bution [31]. For a query with popularity rank i, the number of this query is
proportional to i−α. In the simulation, the parameter α is 0.6 according to the
measurements. We generate the queries according to the Zipf distribution and
insert these queries into the networks.

5.2 Results

Firstly, we implement the QIR strategy. Each item is equally replicated, then,
different queries are issued. Each query is repeated 10,000 times and the averages
are calculated. The result is illustrated in Fig. 2. Compared with the network
size, the number of replicated items is small. The average number of probes for
search success is also very small. For a network with 110,000 nodes, this value is
about 100.

The search performance of HRS is shown in Fig. 3. The results from 50,000,
70,000, and 90,000 node networks are illustrated. In the simulation, each query
is repeated 10,000 times and the average is calculated. As the number of queries
increases, the number of probes decreases rapidly. This distribution shows that
the query popularity can be exploited to reduce the search size.

Figure 4 is the search cost comparison of HRS and QIR. The network size is
100,000. When the query is not popular, HRS and QIR have almost the same
search cost. As the query popularity increases, the search cost gap of HRS and
QIR becomes larger. Furthermore, we study the sum of search cost under Zipf
query popularity distribution. The results are illustrated in Fig. 5 in which the
parameter α is 0.6. The search cost of HRS is less than that of QIR.

2 4 6 8 10

x 10
4

0

200

400

600

800

1000

1200

1400

Network size

N
um

be
r

of
 r

ep
lic

as
/p

ro
be

s

replicas

probes

Fig. 2. The number of probes/replicas for
different network sizes

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Number of queries

N
um

be
r

of
 p

ro
be

s

50000

70000

90000

Fig. 3. The search size of HRS in net-
works with different sizes

182 H. Chen et al.

1 3 5 7 9 11

x 10
4

0

1

2

3

4

5
x 10

7

Network size

Se
ar

ch
 c

os
t

HRS

QIR

Fig. 4. The search cost comparison of
HRS and QIR

1 3 5 7 9 11

x 10
4

0

1

2

3

4

5
x 10

7

Network size

Se
ar

ch
 c

os
t

HRS

QIR

Fig. 5. The search cost comparison with
Zipf query popularity distribution (α =
0.6)

6 Conclusions

To address the issue of exhaustive search in unstructured P2P networks, we pro-
pose HRS, a hybrid replication strategy to improve the search performance of
unstructured P2P networks. By combining a query popularity independent strat-
egy with the square-root strategy, HRS can effectively handle queries, popular
or not. We evaluate this design through mathematical proof and comprehensive
simulations. Results show that HRS can achieve a small search size at a reason-
able search cost. Therefore, HRS is a practical replication strategy for real P2P
systems.

Acknowledgements

This work was supported by National Science Foundation of China (NSFC) un-
der grants No.60433040 and No. 60473090, NSFC/RGC Joint Research Founda-
tion under grant No.60731160630, and National 973 Key Basic Research Program
under grant No.2003CB317003.

References

1. Liu, Y., Liu, X., Xiao, L., Ni, L.M., Zhang, X.: Location-aware topology matching
in p2p systems. In: Proceedings of IEEE INFOCOM 2004, Hong Kong, China.
IEEE, Los Alamitos (2004)

2. Cao, J., Liu, F.B., Xu, C.Z.: P2pgrid: integrating p2p networks into the grid envi-
ronment. Concurr. Comput. Pract. Exper. 19(7), 1023–1046 (2007)

3. Li, M., Lee, W.C., Sivasubramaniam, A.: Semantic small world: An overlay network
for peer-to-peer search. In: Proceedings of IEEE ICNP 2004, Washington, DC,
USA, pp. 228–238. IEEE Computer Society Press, Los Alamitos (2004)

4. Saroiu, S., Gummadi, K., Gribble, S.: Measuring and analyzing the characteristics
of napster and gnutella hosts. Multimedia Systems Journal 9(2), 170–184 (2003)

HRS: A Hybrid Replication Strategy for Exhaustive P2P Search 183

5. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
gnutella-like p2p systems scalable. In: Proceedings of ACM SIGCOMM 2003, Karl-
sruhe, Germany, pp. 407–418. ACM, New York (2003)

6. Morris, J.C.: Distriwiki: a distributed peer-to-peer wiki network. In: Proceedings
of ACM ISW 2007, Quebec, Canada, pp. 69–74. ACM, New York (2007)

7. Urdaneta, G., Pierre, G., Steen, M.v.: A decentralized wiki engine for collaborative
wikipedia hosting. In: Proceedings of WEBIST 2007, Barcelona, Spain, pp. 855–
858. Springer, Heidelberg (2007)

8. Chen, H., Jin, H., Wang, J., Liu, Y., Ni, L.M.: Efficient multi-keyword search over
p2p web. In: Proceedings of ACM WWW 2008, Beijing, China, pp. 989–997. ACM,
New York (2008)

9. Deshpande, M., Amit, A., Chang, M., Venkatasubramanian, N., Mehrotra, S.:
Flashback: A peer-to-peer web server for flash crowds. In: Proceedings of IEEE
ICDCS 2007, Toronto, Ontario, Canada, p. 15. IEEE, Los Alamitos (2007)

10. Chamberlin, D.: Xquery: a query language for XML. In: Proceedings of ACM
SIGMOD 2003, San Diego, California, USA, p. 682. ACM, New York (2003)

11. Cohen, E., Shenker, S.: Replication strategies in unstructured peer-to-peer net-
works. In: Proceedings of ACM SIGCOMM 2002, Pittsburgh, PA, USA, pp. 177–
190. ACM, New York (2002)

12. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
ACM SIGCOMM 2001, San Diego, California, USA, pp. 149–160. ACM, New York
(2001)

13. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proceedings of ACM SIGCOMM 2001, San Francisco,
California, USA, pp. 161–172. ACM, New York (2001)

14. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22(1), 41–53 (2004)

15. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: The case for a hybrid p2p
search infrastructure. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS,
vol. 3279, pp. 141–150. Springer, Heidelberg (2005)

16. Chen, H., Jin, H., Liu, Y., Ni, L.M.: Difficulty-aware hybrid search in peer-to-peer
networks. IEEE Transactions on Parallel and Distributed Systems (TPDS) (2008)

17. Zaharia, M., Keshav, S.: Gossip-based search selection in hybrid peer-to-peer net-
works. In: Proceedings of IPTPS 2006, Santa Barbara, CA, USA (2006)

18. Li, J., Loo, B.T., Hellerstein, J., Kaashoek, F., Karger, D.R., Morris, R.: On the
feasibility of peer-to-peer web indexing and search. In: Kaashoek, M.F., Stoica, I.
(eds.) IPTPS 2003. LNCS, vol. 2735, pp. 207–215. Springer, Heidelberg (2003)

19. Ferreira, R.A., Ramanathan, M.K., Awan, A., Grama, A., Jagannathan, S.: Search
with probabilistic guarantees in unstructured peer-to-peer networks. In: Proceed-
ings of P2P 2005, Konstanz, Germany, pp. 165–172. IEEE, Los Alamitos (2005)

20. Terpstra, W.W., Kangasharju, J., Leng, C., Buchmann, A.P.: Bubblestorm: Re-
silient, probabilistic, and exhaustive peer-to-peer search. In: Proceedings of ACM
SIGCOMM 2007, Kyoto, Japan, pp. 49–60. ACM, New York (2007)

21. Luo, X., Qin, Z., Han, J., Chen, H.: Dht-assisted probabilistic exhaustive search in
unstructured p2p networks. In: Proceedings of IEEE IPDPS 2008, Miami, Florida,
USA. IEEE, Los Alamitos (2008)

22. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

184 H. Chen et al.

23. Massouli, L., Le Merrer, E., Kermarrec, A.M., Ganesh, A.: Peer counting and
sampling in overlay networks: Random walk methods. In: Proceedings of ACM
PODC 2006, Denver, CO, USA, pp. 123–132. ACM, New York (2006)

24. Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K., Demers, A.: Decentralized
schemes for size estimation in large and dynamic groups. In: Proceedings of IEEE
NCA 2005, Cambridge, MA, USA, pp. 41–48. IEEE, Los Alamitos (2005)

25. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: Proceedings of ACM ICS 2002, pp. 84–95. ACM,
New York (2002)

26. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In:
Proceedings of IEEE INFOCOM 2004, Hong Kong, China. IEEE, Los Alamitos
(2004)

27. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509 (1999)

28. Lovasz, L.: Combinatorics. Paul Erdos is Eighty 2(2), 353–398 (1996)
29. Awan, A., Ferreira, R.A., Jagannathan, S., Grama, A.: Distributed uniform sam-

pling in unstructured peer-to-peer networks. In: Proceedings of HICSS 2006, Wash-
ington, DC, USA, p. 223.3. IEEE, Los Alamitos (2006)

30. Bar-Yossef, Z., Friedman, R., Kliot, G.: Rawms - random walk based lightweight
membership service for wireless ad hoc networks. ACM Trans. Comput. Syst. 26(2),
1–66 (2008)

31. Sripanidkulchai, K.: The popularity of gnutella queries and its implications on scal-
ability. In: Oram, A. (ed.) The O’Reilly Peer-to-Peer and Web Services Conference.
O’Reilly, Sebastopol (2001)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 185–195, 2008.
© IFIP International Federation for Information Processing 2008

ResourceDog: A Trusted Resource Discovery and
Automatic Invocation P2P Framework

Bowei Yang, Guanghua Song, and Yao Zheng

College of Computer Science, and Center for Engineering and Scientific Computation,
Zhejiang University, Hangzhou, 310027, P.R. China

boweiy@zju.edu.cn, ghsong@cs.zju.edu.cn, yao.zheng@zju.edu.cn

Abstract. In this paper we propose a trusted resource discovery and automatic
invocation P2P framework. It provides a series of amazing features to overcome
the drawbacks of existing P2P frameworks, such as totally decentralized struc-
tured and semantic searchable topology based on dual level DHT network hier-
archy, distributed metadata storage, unified resource abstraction and trusted
recommendation system based on statistic model of reputation. The Resource-
Dog framework provides a mechanism to discovery resources by tags, prepare
runtime environment for resources automatically, gather and model out rank of
rating for resources. The results demonstrate that the ResourceDog framework
provides convenient, powerful and trusted resources for general users in P2P
environment.

Keywords: P2P, dual level DHT, resource abstraction, reputation system.

1 Introduction

1.1 Motivation

In the recent years, Peer-to-Peer (P2P) computing has gained a lot of popularity in
many distributed applications over the Internet. These include distributed file sharing
[5, 6], high performance computing [19] and so on.

In this paper we discuss a framework, called ResourceDog, for unifying the most
important features of grid computing and P2P computing into a common computing
framework.

Currently, grid computing is mainly providing services for scientific computing,
and grid frameworks usually focus on providing highly reliable services on small
scale but stable infrastructures [20]. On the contrary, P2P frameworks manage larger
scale but not so devoted nodes. Not only scientific computing but also general com-
puting needs a relatively unified, stable, flexible, reliable and high-powered frame-
work. However most of existing popular P2P systems only cover file sharing and all
of them are obsessed with single point of failure, non-supported to various resources
or unable to identify malicious nodes. Original Bittorrent [5] or Emule [6] needs a
central server for seeds storing, Bittorrent protocol with DHT [1, 2, 3, 4] technology
can’t support searching for resources, none of them implement service oriented archi-
tecture. Since all of the control information of the P2P network is stored in the central

186 B. Yang, G. Song, and Y. Zheng

server, all of the services will be down if the central server is down. The ResourceDog
framework enables the automatically computing services invocation based on P2P
architecture. Furthermore, statistical recommendation feature is included to resist
malicious behaviors and to encourage contribution behaviors.

The presented P2P framework includes resource discovery algorithm, resource util-
ize architecture and recommendation model based on reputation and ranking. The
three main parts will be covered in this paper respectively.

1.2 Solution Overview

Axis [7] is introduced as the main engine of ResourceDog to take advantage of stan-
dard web services, thus all language compatible with standard WSDL [8] will be
accepted as the compatible service provider language. Dual level DHT mapping com-
bined with word splitting method is adopted to provide the classical DHT topology
with semantic search feature. Semantic Web service [9] and ontology is pulled in for
service automatic invocation, and an innovational positive feedback statistic model is
drawn out to support recommendation which tries to simulate the scenario in our
social network.

2 Design

First we describe our ResourceDog P2P framework in its most basic form, in the
below subsections we present the details.

In a P2P environment, node A may interact with any nodes in the same network,
we represent the transaction from node A to B as Ta,b(TN), where node A is the initia-
tor and node B is acceptor, TN refers the name for the resource on node B. Two types
of transaction are included in the P2P environment, the first is control transaction, and
the second is functional transaction. Control transaction exists for maintaining P2P
structure, notifying newly added nodes, reputation rating storage and retrieval and so
on; Functional transaction is customized by resource providers of ResourceDog,
which includes but not limited to file sharing, scientific computing, image processing
and instant chat. In addition, after every transaction Ta,b(TN), node A should provides
a rating for this transaction denoted by Ra,b(TN). This rating is maintained by several
nodes in the dual level DHT network. Before every transaction starts, the recommen-
dation rating worked out by modeling all the ratings for a resource TN on target node
X Rx(TN) will be presented to the initiator to assist in making decision.

2.1 Routing and Searching in the ResourceDog Framework

A ResourceDog node maintains a coordinate routing table that holds the IP address,
last visit time (LVT), and the unique identifier (UID) for every node that has con-
tacted with itself or obtained from its neighbors. All of the routing data is stored in the
Derby [10] embedded database, with index key UID for fast accessing and retrieving.
Compared with the improvement to speed up resource searching, lots of rare occupied
coefficient routing data is meritorious, so the routing data purging process could be

ResourceDog: A Trusted Resource Discovery and Automatic Invocation P2P Framework 187

started with a long period. In our approach, the expression of UID for node A listened
on IP AA.BB.CC.DD is:

() (24) | (16) | (8) |UID N AA BB CC DDa = << << << (1)

In ResourceDog, every resource such as files or services will be described with a
short phrase stored in the metadata of this resource. During the resource publish proc-
ess, ResourceDog will split words of the phrase, filter them and publish all of the
meaningful words to remote nodes, the same as what the general search engine does.

Our example framework is implemented with Java, however, the method
java.lang.String.hashCode() is too simple to generate a random and well-proportioned
distributed hash code, Algorithm 1 presents a proved suitable enough method to
achieve this goal in our environment.

Algo. 1. The hashcode generate procedure.

A = SUM((Integer)(every four bytes of input word))

B = 16807 * (A % 127773) - 2836 * (A / 127773)

IF B > 0 THEN:

Return B

ELSE

Return B + 2147483647

ENDIF

In addition, the distance Dar between one node Na with UID(Na) and one resource
Rr with hash code HashCode(Rr) is:

(() ())D ABS UID N HashCode Rar a r= − (2)

In the resource publish process, ResourceDog will filter all the index words, and
publish them to the M most nearest nodes as the 1st DHT indexes for searching to
every word respectively. And N copies of metadata for the resource should be pub-
lished to network as the 2nd DHT indexes for reputation integrity checking, too. Here,
M and N are the parameters to balance the robustness and overhead of ResourceDog
P2P framework.

Figure 1 shows an example scenario. Node G is the provider of resource “calcPI”,
and “calc(ln(x))” is provided by node H, G published 3 copies of 1st DHT layer in-
dexes, “calc”, “calculate” and “PI” to node B, node D and node C respectively ac-
cording to the most nearest publishing algorithm, 2 copy of 2nd DHT layer index ,
“calcPI” to node F and itself, also node H published 3 copies of 1st DHT layer in-
dexes, “calc”, “calculate” and “ln(x)” to node B, node D and node E. As a client, node
A provides “calculate” as the search key word, it checks its own nodes cache, and
select M most nearest nodes to HashCode(“calculate”), node D is one of them. Node
D will transfer to node A a list of resources which provide “calculate” as the 1st DHT
layer search key word. In the demo shown in Figure 1, both of “calcPI” and

188 B. Yang, G. Song, and Y. Zheng

Fig. 1. An example of resource discovery

“calc(ln(x))” provide “calculate” as the 1st DHT layer search key word, so “calcPI”
and “calc(ln(x))” will be returned to node A, node A may select node F or node G for
the details of “calcPI”. Then node A will compare the rating provided by node F with
that provided by node G to check whether node G has been increased the rating by
itself. If the rating on most of 2nd DHT layer nodes (says node F) linked with “calcPI”
is different with that provided by the servant (says node G), the servant will be
marked as cheating. At last node A get the host information (node G) of “calcPI”, and
requests details from node G.

As shown in Figure 1, the reason that Node F holds “calcPI” as the 2nd DHT layer
index is not only accelerating the search process, but also checking the integrity and
authenticity of metadata for resources, for all of the recommendation data can be
accessed by clients.

After every transaction, the two nodes will exchange their own nodes cache, and
every node in the network will check their own cached resource indexes periodically,
if one of the resources is invalid or the entry is idle for some times, the index entry
will be deleted. After every changing to the cache of a resource provider, it will calcu-
late the remapping of the resource, if modification is required, it will republish the
index of resource to network.

To a totally new participator, a list of bootstrap nodes is essential to join the P2P
network. The functioning of ResourceDog framework doesn’t depend on the details
how this is done, but we adopt JXTA [11] as our bootstrap mechanism in the demon-
stration. The detailed demonstration will be shown in section 3.

ResourceDog: A Trusted Resource Discovery and Automatic Invocation P2P Framework 189

2.2 Automatic Invocation

The ResourceDog framework provides a mechanism to access resources without any
manual intervention. A resource will be defined as a mixture of file transfers and
several remote method calls, simplified ontology is adopted to describe the structure
of calling stubs. ResourceDog framework provides a session-like status machine rou-
tine to check whether the necessary precondition is satisfied. Lots of security mecha-
nisms are implemented to enhance the framework, such as RSA asymmetric encryp-
tion and three-way handshake just like the same in TCP/IP protocol. All of the public
keys will be treated as normal resources, they’re stored and accessed by the same
routine introduced in section 2.1.

Fig. 2. An example resource automaton

A simplified resource call sequence demonstrated in Figure 1 is shown in Figure 2.
All of the background transactions will be transparent to the end user.

2.3 Reputation and Recommendation

Currently, lots of P2P systems are receiving accusations that malicious nodes, free-
ride [12] and bad behaviors are flooding over them, so security, trust, ranking and
recommendation mechanism is urgently required by P2P systems. Various models
[13, 14] are proposed to add rating or ranking feature to P2P systems, but few of them
adopt statistical model to generate a recommendation rating for later comers to simu-
late the scenario in our social network.

190 B. Yang, G. Song, and Y. Zheng

Rating for transactions is widely used in modern auction websites, Ebay [15] will
ask the clients to vote for the transaction they participated, 1 for “Positive”, 0 for
“Neutral” and -1 for “Negative”, so that the later comers will know the ratios for all of
“Positive”, “Neutral” and “Negative”.

ResourceDog will refine the result of the voting for resources. A statistic modeling
will take all of the voting data as input and generate a recommendation ratio for later
comers.

In our voting system, all of the voters will vote for a certain resource in their own
ways. The vote rating will follow the Gaussian distribution as the voting goes on,
since the voting behaviors are independent of each other. Figure 3 will show several
probability and cumulative distributions for Gaussian distribution.

Fig. 3. Probability and cumulative distribution chart

The cumulative distribution function (cdf) can be formulated by an airy function
called “Error Function” (erf).

Error function is used widely in probability, statistics, partial differential equations,
and denoise-smoothing communication.

1
() 1 ()

2 2

x
cdf x erf

− µ
= +

σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3)

22
() 0

txerf x e dt
π

−= ∫ (4)

ResourceDog: A Trusted Resource Discovery and Automatic Invocation P2P Framework 191

ResourceDog framework generates the recommendation rating for a certain re-
source using cumulative function denoted by error function.

The recommendation rating (RRR) for a certain resource t with total cumulative
rating (

,0
()

n

x tR TN∑) will be:

(),0(()) (*),0

n R TNx tnRRR R TN erf coefficientx x t
n

∑
=∑ (5)

After a voting of Z with voting rating for this transaction (,(')z tR TN), RRR’ will

be:

'

1' (* ()),0

* '()

() (), ,0
1 1* * (1 ())
2 2

nRRR erf coefficient R TNx x t

coefficient cdf x

n
R TN R TNx t z t

ncoefficient erf

+= ∑

=

+∑

+= +
σ′

(6)

ResourceDog will store every R(TNx,t) of TNt on the 2nd layer DHT network, since
every 2nd layer DHT nodes is determinate by well-known Hashing algorithm, so that
clients are able to check the integrity of recommendation of resources with different
2nd layer DHT nodes. Malicious nodes will be detected easily by the routine illumi-
nated in figure 1.

3 Experiments

3.1 Routing and Searching

In order to demonstrate the usage of this framework and to evaluate the performance,
we will give out several demos.

We built a local area network comprised of 30 PCs, all the PCs run different oper-
ating systems including Linux and Windows. They are divided into 4 100M based fast
ethernet network segments. All nodes are configured with a stable enough initializing
seeding node.

A node in the network will collect neighbor nodes information every 5 minutes
from all the known neighbors or exchange with buddies after every transaction. A
node in figure 4 received a notification of neighbor changing at 47 minutes for a
transaction occurred at that point.

The first demo we present is a simple numeric computing Message Passing Inter-
face (MPI) [16] parallel routine, a general LAM-MPI [17] parallel process will be
invocated by ResourceDog framework.

The numeration integration of Π can be presented by:
1 4

20 1
dx

x
Π = ∫

+
 (7)

192 B. Yang, G. Song, and Y. Zheng

Fig. 4. Demonstrating for dynamic changing of our P2P network

Π equals the area surround by the curve and x-axis on [0, 1], so the area can be
approximately calculated by lots of rectangles, in our demo, we divide [0, 1] into
1,000,000,000 intervals, and accumulate all of their areas. The execution time com-
parison of pure LAM-MPI and LAM-MPI on the ResourceDog framework using
variant number of nodes in a cluster is listed in Table 1.

Table 1. Execution time(s) comparison

Test platform 1 node 2 nodes 4 nodes 8 nodes 16 nodes

Pure LAM-MPI 50.921 25.461 12.748 6.388 3.204

Resource Dog 52.114 26.701 13.904 7.572 4.331

According to Table 1, Resource Dog P2P framework takes about one second to

prepare the environment for MPI execution such as authentication and remote process
calling in our demo.

3.2 Resource Automatic Invocation

Web service based on HTTP protocol is connectionless oriented, so real time re-
sources can’t be built on traditional web service platform. The second demo will in-
troduce a new architecture for real time resources on ResourceDog. An Internet Relay

ResourceDog: A Trusted Resource Discovery and Automatic Invocation P2P Framework 193

Chat (IRC) [18] like chatting service has been implemented on our ResourceDog
connectionless oriented framework.

In the chat service, nodes is grouped by the topic servers, ResourceDog servers can
setup a topic service and publish the metadata to the DHT network as the way JXTA
[11] publishes pipeline advertisements, others interested with the topic can join the
channel, two actions will be taken during the joining process. First, the client create a
socket with the local ResourceDog server, second, the local ResourceDog server reg-
isters itself to the topic server. After every receiving of messages, the topic server will
scan the registered local servers list, and send the message to them one by one, then
the local server will send the message to its client in time via local connection ori-
ented socket. No connections will be established between topic server and the local
servers. Thus real-time chatting is achieved on the connectionless framework.

3.3 Reputation and Recommendation Simulation

In this section, we will show the experimental result by a simulated demonstration.

Fig. 5. Recommended rating after every voting

As shown in Figure 5, we simulate 300 users to rate for 6 resources respectively.
Every user will vote for a resource at a normal distribution with certain mean value
and standard deviation, also an interferential voting is included every 20 cycles. The
simulated result shows a good-fit chart for true situation, since the recommendation
rating accurately shows the cumulative effect of ratings and can be self-adjusted to
anti-interference as the voting going on, moreover the resource will never be totally
opponent or recommended.

194 B. Yang, G. Song, and Y. Zheng

4 Related Works

There have been some researches focusing on various aspects of P2P framework.
Some interesting models and frameworks have been proposed. Here we describe a
few related examples from two aspects, resource discovery and trust computing.

JXTA [11] community sponsored by Sun micro system mainly aims to build a
wide area P2P network composed of all of smart devices. It provides a convenience
and platform independent routine to organize all of nodes and access the demanded
resource. However, as the core conception of JXTA framework, advertisements can’t
support semantic search, so JXTA framework does not overcome the search prob-
lems. Also JXTA framework never refers to reputation problems of nodes in the net-
work.

In trust computing area, some researches just focus on the hierarchy of reputation
system and reputation data storage strategy [21].

EigenTrust [22] only worked out the global reputation rating for nodes, but ignored
ratings of resources, also it doesn’t simulate the real society network to give out the
recommendation rating based on statistical models.

In [23], Damiani et al. propose a distributed reputation sharing and assessing
model, based on Gnutella. They developed a protocol for Gnutella to enhancement the
security and reliability of nodes and resources in Gnutella by assigning, sharing, and
combining reputations on servants and resources.

5 Conclusions and Future Work

In this paper, we discussed the architecture and algorithm of the ResourceDog P2P
framework. ResourceDog provides a complete discovery, invocation and recommen-
dation P2P platform that caters scientific computing, flexible computing and trusted
computing. The experimental results show that ResourceDog is more stable, flexible
and secure than most of existing P2P platforms. Applications on the Internet, such as
file sharing, real-time chatting, and format transformation can be managed and rated
properly under the framework. Therefore, we can utilize variant applications in one-
stop framework and defend the malicious behaviors.

At present, only some typical types of resources have been tested on ResourceDog,
we will try to deploy more types of resources in the framework. Furthermore, smarter
searching with Semantic Web services and optimized routing algorithms will be
adopted to adapt for the complex real-network.

References

[1] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable contentad-
dressable network. In: Proceedings of the ACM SIGCOMM, San Diego, CA, August
2001, pp. 161–172 (2001)

[2] Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable
PeerToPeer lookup service for internet applications. In: Proceedings of the ACM
SIGCOMM, pp. 149–160 (2001)

ResourceDog: A Trusted Resource Discovery and Automatic Invocation P2P Framework 195

[3] Druschel, P., Rowstron, A.: Pastry: Scalable, distributed object location and routing for
largescale peertopeer systems. In: Proc. of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms(Middleware 2001) (November 2001)

[4] Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for faulttolerant
widearea location and routing. University of California at Berkeley, Computer Science
Department, Tech. Rep. UCB/CSD011141 (2001)

[5] Bittorrent, http://www.bittorrent.org
[6] Emule, http://www.emule-project.net
[7] AXIS, http://ws.apache.org/axis
[8] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description

language (wsdl) 1.1 Technical report (2001), http://www.w3.org/TR/wsdl/
[9] Rahm, E., Bernsteindoi, P.A.: A survey of approaches to automatic schema matching. The

International Journal on Very Large Data Bases, 334–350 (2001)
[10] Apache Derby, http://db.apache.org/derby
[11] Gong, L.: JXTA: a network programming environment. Internet Computing, 88–95

(2001)
[12] Adar, E., Huberman, B.A.: Free Riding on Gnutella, Technical report, Xerox PARC

(2000)
[13] Aberer, K., Despotovic, Z.: Managing trust in a peer-2-peer information system. In: Pro-

ceedings of the international conference on Information and knowledge management, pp.
310–317 (2001)

[14] Emekci, F., Sahin, O.D., Agrawal, D., El Abbadi, A.: A peer-to-peer framework for Web
service discovery with ranking. In: Proceedings of IEEE International Conference Web
Services, pp. 192–199 (2004)

[15] Ebay, http://www.ebay.com
[16] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard (1994)
[17] Burns, G., Daoud, R., Vaigl, J.: Lam: An open cluster environment for mpi. In: Proceed-

ings of Supercomputing Symposium, pp. 379–386 (1994)
[18] Oikarinen, J., Reed, D.: Internet Relay Chat Protocol (1993), http://tools.ietf.

org/html/rfc1459
[19] Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: A Tool for Performing Parameter-

ised Simulations Using Distributed Workstations. In: Proceedings of 4th IEEE Symp. on
High Performance Distributed Computing, pp. 112–121 (1995)

[20] Foster, I., Iamnichi, A.: On Death, Taxes, and Convergence of P2P and Grid Computing.
In: Proceedings of the 2nd Int’l Workshop on Peer-to-Peer Systems (IPTP3 2003), pp.
118–128 (2003)

[21] Dutta, D., Goel, A., Govindan, R., Zhang, H.: The Design of a Distributed Rating Scheme
for Peer-to-Peer Systems. In: 1st Workshop on Economic Issues in P2P Systems (2003)

[22] Kamvar, S., Schlosser, M., Garcia-Molina, H.: The Eigentrust Algorithm for Reputation
Management in P2P Networks. In: Proceedings of 12th ACM World Wide Web (ACM
WWW), pp. 640–651 (2003)

[23] Damiani, E., Paraboschi, S., Samarati, P., Violante, F.: A reputation-based approach for
choosing reliable resources in peer-to-peer networks. In: Proceedings of the 9th ACM
conference on Computer and communications security, pp. 207–216 (2002

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 196 – 209, 2008.
© IFIP International Federation for Information Processing 2008

A Novel Approach to Manage Asymmetric Traffic Flows
for Secure Network Proxies

Qing Li

Blue Coat Systems, Inc., 420 N. Mary Ave., Sunnyvale, CA 94085-4121, USA
Qing.Li@BlueCoat.com

Abstract. A transparent secure network proxy intercepts web traffic such as
HTTP requests and applies access policies to the intercepted traffic. The proxy
will reinitiate a request on behalf of the client when policies permit. Depending
on policy configuration, this proxy may masquerade as the client when generat-
ing the request. The response from the server may reach the client instead of the
proxy due to asymmetric routing, and if so, would be rejected by the client as an
invalid response. Consequently the proxy can not complete the original request.
This paper presents a new protocol and a comprehensive mechanism that facili-
tates the formation of a cluster comprised of multiple proxies. This proxy clus-
ter can cover a network that spans a large geographical area, and collaboratively
discover and redirect asymmetrically routed traffic flows towards the appropri-
ate member proxy. The protocol and the algorithms presented in this paper can
operate in both IPv4 and IPv6 [1] networks.1

1 Background and Motivation

Secure network proxies play an essential role in today's enterprise networks. These
proxies can enforce access policies, conduct traffic monitoring, and perform content
delivery acceleration through caching and WAN optimization. The various security
requirements combined with reliability requirements present complex network archi-
tectures in which proxies cannot be deployed due to application breakage. The de-
ploy-ability of a secure network proxy is measured by the types of policies the proxy
can enforce without impeding applications. In other words, applications must con-
tinue to function even when application traffic is subject to processing at the proxy.
This section provides a general introduction to the concept of a secure network proxy
followed by descriptions of example problems challenging the proxy deployment.

1.1 Introduction

In this paper, a secure network proxy is an appliance that is situated between network
nodes (i.e. clients) that make service and content requests, and network nodes (i.e.
servers) that offer those requested services and content. Within the secure network
proxy appliance, a set of application proxies operate in concert to classify and process
the requests according to specific protocols. Examples of application proxies [2] are

1 This work and its publication are sponsored by Blue Coat Systems Inc., Sunnyvale, CA, USA.

 A Novel Approach to Manage Asymmetric Traffic Flows 197

HTTP proxy, FTP proxy, Streaming Media Proxy, Peer-to-Peer proxy, SSL proxy,
MAPI proxy and CIFS proxy. A secure network proxy typically operates at the appli-
cation layer (layer-7) of the OSI stack [3]. In practice, since a secure network proxy is
deployed at the network perimeter to manage traffic flowing between the Intranet and
the Internet, a secure network proxy is commonly known as a gateway proxy. The
most common gateway proxy is a web proxy that specializes in processing HTTP and
HTTPS traffic. In this paper the terms secure network proxy, secure web proxy, web
proxy and proxy are used interchangeably to simply the discussions.

A web proxy is termed a transparent proxy [4] if its presence is not known to the
clients and servers. A web proxy is termed an explicit proxy when clients are config-
ured to send all requests to that proxy instead of to the servers directly. A web proxy
is said to be deployed inline if all traffic generated between the clients and the servers
always traverse a path through the proxy.

Once a proxy intercepts a request, the access polices installed in the proxy are exe-
cuted to determine what actions to apply to the request. The most common actions are
intercept and bypass. Bypassed traffic will pass through the proxy without any modi-
fication. In this case the proxy acts as either a router or a bridge. Intercepted traffic is
subject to further processing within the proxy by one or more application protocol
proxies.

Since a web proxy operates at the application layer, the web proxy may initiate a
request to the server on behalf of the client. For example, the proxy intercepts a HTTP
request by first terminating the associated TCP connection [5], i.e. completing that
TCP connection as if the proxy were the server. Then the subsequent HTTP request is
transferred to the HTTP application proxy. If the HTTP application proxy decides to
grant that request, the HTTP proxy will then initiate an actual request to the origin
server on behalf of the client.

In essence, the proxy created two TCP connections for the original client request:
one TCP connection is established between the client and the proxy (also known as
the client connection or client inbound connection), and another TCP connection is
established between the proxy and the origin server (also known as the server connec-
tion or server outbound connection). The response received on the server connection
is then forwarded onto the client connection. Transformations may be applied to the
response by the application proxy before it is forwarded to the client. The proxy may
also decide to serve the response from its local cache instead of contacting the origin
server.

1.2 Problems and Motivation

Since the server may use the client IP address as a means of authentication, the web
proxy may masquerade as the client (sometimes known as client-spoofing) [6] by
using the client's IP address as the source address of the TCP connection that the
proxy initiates. In environments where asymmetric routing is a common occurrence,
or due to routing policy or traffic engineering, the server response may not reach the
proxy but instead reaches the client. Such environments present a challenge to the
extent that deploying transparent proxies may be impossible. Consider the example
given in Fig. 1.

198 Q. Li

Fig. 1. This figure illustrates a typical asymmetric routing situation in an enterprise network

Fig. 1 illustrates an enterprise network where two access points are available over
two different ISPs. In this example, router RA is configured as the default gateway at
the client C. Proxy A is inline between C and RA. Proxy A intercepts the request from
C, and then initiates another connection to the origin server S. Proxy A exercises client-
spoofing because S performs IP address based authentication. This proxy A-to-S con-
nection is through access point X. The return traffic from S to A, however, is routed
through access point Y, which traverses proxy B instead of A. The main reason for this
asymmetric flow is because which path the server decides to take for reaching the cli-
ent's IP address (proxy A spoofed that IP address), is determined by the configuration at
server S and by the routing policy defined at access point Y. Proxy B may decide to
bypass this response because it has no corresponding request state. Client C, however,
will reject this response because it does not have an active TCP connection that matches
the response from S. More security conscious proxies may decide to reject the response
outright by dropping the flow. In either case, the original request will never succeed.

Traffic load balancers and Layer-4 (L4) switches [7] are an integral part of the de-
sign in many enterprise networks. The function performed by the load balancer or the
L4 switch may impose adverse effects that threaten the effectiveness of a transparent
proxy. Consider the example given in Fig. 2. In order to handle a large volume of
traffic, a typical design is to deploy a traffic load balancer in front of a farm of proxies
that have similar capabilities and processing logics. In this figure, proxy A is called a
downstream proxy and each proxy in the proxy farm is called an upstream proxy [2].

Proxies can operate in conjunction with one another in what is known as proxy
chaining [2]. This proxy chain performs specialized functions that may require shared
state. An example is dictionary compression where two proxies maintain parallel
dictionaries generated from traffic passing through this proxy chain. These dictionar-
ies allow the proxies to replace previously seen data sent between them with small
tokens. Each token refers to a location in the dictionary where the previously seen
data is stored.

 A Novel Approach to Manage Asymmetric Traffic Flows 199

Fig. 2. Load balancers and L4 switches may break upstream and downstream proxy affinity

In this example, a downstream proxy needs to establish a chain with an upstream
proxy from the proxy farm when servicing a request. It is preferable the downstream
proxy establishes a chain with the same upstream proxy when the downstream proxy
services other requests. The goal is to maintain an affinity in the proxy chain so to
continue to build that shared state and maximize its usage.

Traffic from the downstream proxy reaches the load balancer first. The load balan-
cer may use the client and server addresses in making its load balancing decision. If
the downstream proxy is deployed transparently and exercises client spoofing, then
the load balancer will see the client's IP address in the connections initiated by the
downstream proxy. Subsequently the load balancer may forward the request to a dif-
ferent upstream proxy. On the other hand, the desired upstream proxy would be cho-
sen correctly without client spoofing because the IP address of the downstream proxy
would be visible instead.

Assume in this example that a downstream proxy creates a chain with an upstream
proxy to perform dictionary based compression for traffic acceleration. The size and
the lifetime of the dictionary are important factors in achieving a good compression
ratio. In this example, downstream proxy A and upstream proxy B have built up a
large dictionary over time. This dictionary has been consulted each time A serves
requests from client X, as such, client X has been enjoying a good response time for
its requests. Then at some point in time the server changed its policy to using IP ad-
dress based authentication. Now proxy A must activate client spoofing resulting in the
load balancer deciding to redirect traffic from proxy A to proxy C. Since proxies A
and C have had limited exchange, the dictionary constructed thus far is relatively
small. Client X would begin to experience a sudden drop in performance that trans-
lates into noticeable delays.

200 Q. Li

1.3 Related Work

Transparent proxies are essentially man-in-the-middle appliances that monitor, log
and intercept all traffic flows that traverse through them. The concerns for privacy,
copyright and content integrity [4] have only grown in recent years. In the corporate
environments, individual user’s desire for privacy conflicts with the corporate inter-
ests, where visibility and control are the main focuses.

Since the operational goals of the corporate lies in the opposite spectrum of those
goals demanded by the users, perhaps for this reason there is a substantive lack of
research activities in academia to improve the operational efficiencies and to expand
the deployment coverage of these transparent proxies. Yet in the enterprise environ-
ments secure gateway proxies are essential and are confronted by numerous
challenges presented by the various networks in which these proxies are deployed.
Research into the vendor space yields a single vendor product that offers a partial
solution, however, that partial solution in terms of algorithms is not disclosed.

The above are the main motivations for this research and the publication of this
paper. The goals are to bring these issues to light, and to offer a detailed disclosure on
a solution that is fully deployed in production environments in hope to solicit peer
reviews, and to invigorate additional research activities in this area.

2 System Architecture

To solve the aforementioned problems, this section presents the details of a protocol
that facilitates the formation of a cluster. This cluster is comprised of multiple mem-
ber proxies that can be multiple hops away from each other. Each member proxy
exchanges information about the requests that it has processed with every other mem-
ber proxy. The clustering protocol is designed to manage the cluster membership as
well as to exchange states of processed requests.

2.1 Overview

In the problem illustrated in Fig. 1, if proxy B has the ability to recognize traffic flows
that belong to proxy A and can forward to A those traffic flows, then these transparent
proxies can be deployed throughout an autonomous system without concerns for
asymmetric routing or the presence of load balancers. Proxy A must inform proxy B
about the connections that A has processed. Similarly proxy B must inform proxy A
of those connections that belong to B. The solution presented in this paper can handle
the situation where asymmetrically routed traffic reaches a member proxy before the
proxy-to-proxy notification arrives at that member proxy.

The solution is to create a proxy cluster that includes A and B and let A and B form
a peering relationship. Proxy A and B can signal one another about their respective
workload after successfully establishing the peering relationship. Proxies are typically
deployed in different subnetworks and these proxies are multiple hops away from
each other. The notifications must be delivered reliably. For these reasons proxy peers
within the cluster are connected over a full-mesh topology. The connection between
any pair of peers is a TCP connection. Fig. 3 visualizes the secure proxy cluster.

 A Novel Approach to Manage Asymmetric Traffic Flows 201

Fig. 3. Member proxies form a cluster with full-mesh TCP connectivities

Section 3 provides additional information on the reasons why the solution is not based
on a multicast protocol.

The solution is comprised of the following three main modules:

• cluster control-channel management module
• connection management module
• traffic flow forwarding module

The cluster control-channel management module is responsible for establishing
and maintaining peer relationships with every other member in the cluster.

The connection management module is responsible for maintaining the database
that describes connections that are processed by local proxy as well as connections
that are processed in peer proxies.

The traffic flow forwarding module is responsible for classifying packets against
this connection database and forwarding the packets to either local on-box application
proxies, or redirecting these packets to peer proxies.

2.2 Cluster Control-Channel Management

In the first implementation of this solution, the cluster membership is statically con-
figured into each proxy. A proxy attempts to establish a TCP connection to every
other peer in the membership list. The membership list may be static, but the proxies
identified in the list may join and leave the cluster dynamically. A proxy may leave
the cluster either voluntarily or involuntarily due to hardware or software failure.

This special peer-to-peer TCP connection is called a cluster control-channel, or
simply the control-channel. A specially chosen TCP port is reserved by the imple-
mentation as the service port on which peering requests are made. If successful, the
two peers begin to synchronize their respective connection tables over the control-
channel. In the context of this paper, the connection table includes all of the TCP and
UDP connections associated with the requests that have been processed by a proxy.

202 Q. Li

Note for intercepted requests, the connection table contains both client bound and
server bound connections.

The cluster connection database, or simply connection database is defined as the
connection table that contains all of the intercepted and bypassed connections that
have been collected from all of the active peers of the cluster. The cluster connection
database is described in more detail in Section 2.4.

The types of messages that are exchanged over the control-channel are given in
Table 1. The INSTALL_CONNECTION message informs the receiver about those con-
nections that are handled by the sender. The receiver will store these connections in its
connection database so that it can recognize packets that are associated with those con-
nections, and forward those packets back to the sender. The REMOVE_CONNECTION
message informs the receiver about those connections that have been completed, or
those connections that should no longer be bypassed (perhaps due to changes made in
the access policy). The receiver will remove those connections from its connection
database.

Table 1. Cluster Management Control Connection Message Types

2.3 Cluster Control-Channel Packet Formats

The control-channel packets have a generic four-byte header, which is shown in
Fig. 4. The first two bytes are common, and the content of the subsequent two bytes
depends entirely on the message type.

Each packet begins with a Message Type. The defined message types are IN-
STALL_CONNECTION, REMOVE_CONNECTION, and CLUSTER_PEER_SYNC. The
Action Type can be one of FORWARD or BYPASS. The Protocol Family can be either
TCP or UDP, which identifies subsequent connection information as to contain either
TCP or UDP connections. The Address Family specifies whether the IP addresses of a
given connection are IPv4 or IPv6 addresses.

 A Novel Approach to Manage Asymmetric Traffic Flows 203

Fig. 4. Control-Channel packet header format

A proxy that intercepts a client request will issue two FORWARD actions to all of
its peers. The first FORWARD action installs the client inbound connection and the
second FORWARD action installs the server outbound connection in the peers. All
traffic that belongs to these two connections which arrives at any other peer will be
forwarded to the intercepting proxy.

The BYPASS action is necessary when one proxy receives a client request and the
policy indicates the connection is to be bypassed. In this case, instead of redirecting
the return traffic that was asymmetrically routed to the intercepting proxy, the inter-
cepting proxy can ask its cluster peers to bypass the traffic, thus forwarding the traffic
toward the requesting client or server directly. This direct bypass approach can be
considered as an optimization.

The PEER_JOIN action serves as a safeguard against accidental connection made to
the special TCP port reserved for cluster peering requests. Once the TCP connection
is successful, the peering initiator must issue the PEER_JOIN action as the first ex-
change. In return, the peer will respond with a PEER_JOIN message. The peer that is
waiting for the peering requests on the special socket [8] will close the control con-
nection if the PEER_JOIN action is not the first exchange. In other words, for both
ends of the control-channel, the first bytes exchanged must constitute a PEER_JOIN
action and its associated data. The number of connect attempts to be made for estab-
lishing peering relation to another cluster member before abandoning that peer is
configurable by the administrator. Infinite retries is a configurable option to manage
the situation where the peer is down for an extended period of time but will eventually
recover.

The packet formats may change depending on the Version field. Therefore, at the
time of establishing the peering relation the version field must be examined by each
peer to determine if the peers are compatible. Incompatible peers will result in the
failure of peering establishment. The version field is carried in the PEER_JOIN mes-
sage only.

The PEER_KEEPALIVE action is necessary when a configured period of time has
elapsed and there is no traffic on a control-channel. The PEER_KEEPALIVE is sent to
each peer to inform those peers about the liveliness of the sender. A response is not
necessary because the control channel operates over TCP, which is reliable. Once a
proxy deems its peer unreachable, that proxy will remove all connections (whether

204 Q. Li

bypassed or intercepted) associated with the unreachable peer from its cluster connec-
tion database.

A member proxy that voluntarily leaves the cluster issues the PEER_LEAVE action
to all other members. The PEER_LEAVE action is a proactive way of informing other
peers to immediately remove all connections associated with the sender of the
PEER_LEAVE action from their connection databases.

A member proxy transmits the PEER_REJECT action to inform another proxy that
its peering request has been denied, for example, because the other proxy is not pre-
sent in the cluster membership list. The reason for the rejection is included in the
PEER_REJECT message.

For the PEER_REJECT message, the Error Code field indicates reason for peering
failure. Peering failure can occur when a peer is not in the cluster membership list but
attempts to connect to other members that are in the list. Another reason for peering
rejection is version number mismatch.

After a proxy has established the control channel with another proxy, if an unrec-
ognized message is received on their control-channel, that control-channel will be
closed. The main reason is at the point where the bad message is read, the proxy can
no longer parse the remaining bytes received on that channel. In this case the proxy
will issue a PEER_LEAVE action to its peer with an error code that indicates bad mes-
sage.

Fig. 5 illustrates an example of a control-channel packet carrying IPv4 connection
information, and this connection would be forwarded by the peers. The size of the
source and destination ports is fixed. Each INSTALL_CONNECTION and RE-
MOVE_CONNECTION will carry only one set of connection information. In other
words, if there are two blocks of connection information to be installed, then there
will be two INSTALL_CONNECTION messages.

Fig. 5. This is an example of an IPv4 connection installation packet

As can be seen from Fig. 5, the size of the packet can be derived from the packet
header. For example, if the message type is INSTALL_CONNECTION, the protocol is
TCP, and the address family is IPv4, then the packet is 16 bytes long. On the other
hand, if the address family is IPv6, then the packet is 40 bytes in size (4-byte header,
4 bytes for ports, 16-byte source IPv6 address, and 16-byte destination IPv6 address).

Fig. 6 illustrates the possible usage of these message types. The INIT state is the
state where a proxy reads and parses the cluster membership list, and determines
which peers it should initiate an active peering request to. In the CONNECT state, the
peering request initiator responds with a PEER_JOIN and enters the SYNCHRONIZE
state. In the SYNCHRONIZE state, the two peers exchange their respective connection
tables. The SYNCHRONIZE state is the same as the ESTABLISHED state if the initiator
has an empty connection table.

 A Novel Approach to Manage Asymmetric Traffic Flows 205

Fig. 6. Example of peering states and associated message exchanges

2.4 Cluster Connection Database Management

At the completion of the cluster establishment, all of the proxies belonging to the
same cluster must have the same connection database of all the connections that are
intercepted and bypassed by every member proxy. The most efficient way to synchro-
nize the connection table is to exchange local connection table with each peer at the
peering time. Once the cluster is fully established, each proxy will maintain a cluster
connection database covering all of the active peers. New members can join the clus-
ter and the peer table will be updated accordingly.

Each time a new request is processed by a proxy, that proxy sends the IN-
STALL_CONNECTION notification to all its peers before it initiates a connection to
the server for that request. This approach will reduce possible memory overhead that
may be incurred by a peer if the server response reaches a peer before the notification
arrives at that peer.

Each proxy unilaterally sends out PEER_KEEPALIVE messages on its own timer,
and the other side of the control channel treats this peer as unresponsive if that side
does not hear any traffic after some fixed time interval, for example, 3 times the
PEER_KEEPALIVE interval. The connections associated with a peer are removed from
the local connection database if the peer becomes non-responsive. The number of
probes to send and the probe interval are configurable by the administrator on a per
peer basis. A proxy will reset the PEER_KEEPALIVE transmission timer each time a
message of INSTALL_CONNECTION or REMOVE_CONNECTION type is received.
The periodic timer is also reset when a PEER_KEEPALIVE is triggered.

Table 2 illustrates the structure of the connection table at the intercepting proxy,
and the corresponding connection database maintained by the peers.

206 Q. Li

Table 2. Connection Table and Connection Database

2.5 Traffic Flow Forwarding Module

Once the connection database is synchronized among all peers, the traffic flow for-
warding module within a proxy can begin processing traffic flows that belong to other
member proxies.

The traffic flow module must first act as a packet classifier, i.e. the traffic flow
module must examine all traffic received by the proxy and match this traffic against
the local connection database. Conceptually the connection database is comprised of
all connections that have been processed by all member proxies. In the actual imple-
mentation, however, connections local to a proxy are not inserted to that database but
are kept in a separate table for performance reasons.

For an input packet that matches a connection in the connection database, i.e. for a
packet that belongs to a traffic flow processed by another proxy, the traffic flow mod-
ule will package this off-box packet and transmit it to the proxy identified by the
connection database entry (i.e., to the IP address specified in the connection entry).
The off-box packet is encapsulated inside an IP-in-IP frame [9]. The IP-in-IP frame
has the address of the local proxy as the source address, and the address of the remote
proxy as the destination address. The choice of using IP-in-IP encapsulation for trans-
porting off-box traffic is to take advantage of the existing routing infrastructure, and
for ease of implementation.

3 Discussion

The clustering protocol could be built on top of a multicast mechanism because multi-
casting connection state information to all other members simultaneously is more
scalable. IP multicast forwarding is not a mandatory requirement and is by default
disabled in the majority of the enterprise routers. The connection state information
must be exchanged reliably and in bounded time among the peers. There exists reli-
able multicast protocols, but those solutions are typically too complex to implement.
The solution presented in this paper assumes the number of peers would not exceed
20 proxies for all practical purposes. A reliable multicast clustering protocol would be
desirable if the number of peers exceed that limit.

 A Novel Approach to Manage Asymmetric Traffic Flows 207

When a proxy first encounters a partial flow, e.g. the proxy receives a TCP
<SYN,ACK> packet, or when the proxy receives a TCP packet with only the <ACK>
bit set, and the proxy cannot find any connection that matches this packet in either the
local connection table or the overall connection database. In this situation, the proxy
cannot discard any packet belonging to the partial flow. The reason being another
member proxy may have processed that flow, and the notification about that flow is in
transit and has not reached the local proxy. The longer a proxy can hold these partial
packets, the longer the distance is tolerated between a pair of proxies. In other words,
the packet hold time determines the diameter of the cluster. Once the hold time ex-
pires, the queued packets are subject to re-classification and can be dropped if a
matching connection is still missing.

The solution proposed in this paper can be utilized to build intelligent load balan-
cers. Intelligence comes from the fact that offloading decisions (i.e. connection for-
warding) can be made by an external module operating at a layer higher than layer-4.
Refer to Fig. 2, consider the scenario where a TCP connection request (e.g. as a result
of a HTTP request) is received at a member proxy. This TCP <SYN> packet can be
handed to the WAN optimization module. The WAN optimization module examines
the client and server addresses, and determines another proxy is best at handling this
request because that other proxy has built a better compression dictionary. In this
case, the WAN optimization module would instruct the connection management
module to install this connection as an off box connection, and then subsequently
forward this connection to the chosen member proxy. Such a method is sometimes
referred to as connection handoff.

The traditional load balancer or L4 switches operate at layer-3 and layer-4 of the
OSI stack. The load balancer is typically a single point of failure, and the traffic flow
is load balanced in one direction. The full-mesh cluster topology as shown in Fig. 3
enables bidirectional load balancing and provides reliability in the overall solution
because if one member proxy is inoperable, only a subnetwork that is covered by that
failed proxy would be affected. Traffic is not affected by the failure if the network has
built-in redundancy and can re-route the traffic around the failed proxy to another
member proxy.

Since the connection database contains all of the requests processed by every
member proxy, and because each entry in the database identifies a responsible proxy,
an administrator can access any member proxy to gain a complete view of all proxied
traffic flowing through the entire network. In other words, the solution proposed can
serve as an excellent network troubleshooting tool.

Another observation is each member proxy can enforce both the access policies de-
fined in it, and at the same time enforce policies defined in the other member proxies
as well. This solution enables a large amount of security and access policies to be
divided into smaller subsets and install each subset into one member proxy to enforce.
In other words, this solution allows for the implementation of a distributed policy
enforcement mechanism.

In the enterprise environment where the clustering solution is deployed, and ac-
cordingly to the appliance capability specification, there are approximately 20,000
simultaneous requests active within the appliance at any given time. At a minimum,
each connection state holds the protocol type, the address family, connection 4-tuple
<source address, source port, destination address, destination port>, the IP address of

208 Q. Li

the responsible proxy and the action type. For IPv4 each connection state requires
roughly 32 bytes, and with a cluster containing 20 member proxies, the size of the
connection database is approximately 25.6 MB.

In the same deployment environment, each proxy is subject to approximately 2000
requests per second. Assuming these requests are HTTP requests, each requested
object is typically 10K bytes in size, which translates into 20MB per second per link
traffic. In other words, the proxy receives 160Mbps from the server and then transfers
this same amount of traffic to the client. In the worst situation where all traffic des-
tined to one proxy must always traverse another member proxy, and assume there is a
100ms delay between the two peers, then that other member proxy must buffer 2MB
of packets on behalf of its peer.

At 2000 requests per second, approximately 390Mbps is exchanged within the cluster
for installing or removing connection states. Each proxy handles roughly 19.5Mbps of
cluster protocol exchange in the worst case and with 20 proxies in the cluster.

The solution presented in this paper has been implemented in a system with 4
CPUs, 4GB RAM and multiple Gigabit Ethernet interfaces, which represents a typical
high-end appliance. The system memory and network bandwidth requirements in the
worst case scenario are easily satisfied.

4 Conclusion and Future Work

In this paper I have described a protocol and system that enable a group of proxies to
form a proxy cluster. This cluster can cover a large scale network that can span geo-
graphical locations. This proxy cluster acts as a single virtual proxy that can enforce a
large distributed set of policies. Without the proposed solution, transparent proxies
that perform client spoofing cannot be deployed in environments where asymmetric
routing takes place. The solution presented in this paper also enables the construction
of better load balancers and application layer switches.

The solution proposed in this paper has been deployed in real-world production
environments. Performance measurements were conducted using commercial web
performance testing tools against the requirements specification. A formal system
performance analysis is in progress.

Acknowledgements. I would like to thank Blue Coat Systems for sponsoring this
research work and granting me the permissions for publication. I would like to thank
the various reviewers from Blue Coat Systems for their comments and suggestions, in
particular Min Hao (Howard) Chen and Yusheng Huang. I would like to thank Ron
Frederick for his review and his technical contribution.

References

1. Li, Q., Jinmei, T., Shima, K.: IPv6 Core Protocols Implementation. Morgan Kaufmann, San

Francisco (2006)
2. Gourley, D., Totty, B., Sayer, M., Reddy, S., Aggarwal, A.: HTTP The Definitive Guide.

O’Reilly, Sebastopol (2002)

 A Novel Approach to Manage Asymmetric Traffic Flows 209

3. Tanenbaum, A.S.: Computer Networks, 4th edn. Prentice Hall PTR, Upper Saddle River
(2002)

4. Wessels, D.: Web Caching. O’Reilly, Sebastopol (2001)
5. Stevens, W., Wright, G.: TCP/IP Illustrated. The Implementation, vol. 2. Addison-Wesley,

Upper Saddle River (1994)
6. Wikipedia, http://en.wikipedia.org/wiki/IP_address_spoofing
7. Syme, M., Goldie, P.: Optimizing Network Performance with Content Switching: Server,

Firewall, and Cache Load Balancing. Prentice Hall PTR, Upper Saddle River (2003)
8. Stevens, W.: Unix Network Programming. The Sockets Networking API, 3rd edn., vol. 1.

Addison-Wesley, Upper Saddle River (2003)
9. Simpson, W.: RFC 1853, IP in IP Tunneling, IETF (1995)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 210–220, 2008.
© IFIP International Federation for Information Processing 2008

Automatic Transformation for Overlapping
Communication and Computation

Changjun Hu, Yewei Shao, Jue Wang, and Jianjiang Li

School of Information Engineering, University of Science and Technology Beijing
NO.30 Xueyuan Road, Haidian District, Beijing, P.R.China

huchangjun@ies.ustb.edu.cn, yeweishao@gmail.com,
ncepu5@gmail.com, jianjiangli@gmail.com

Abstract. Message-passing is a predominant programming paradigm for dis-
tributed memory systems. RDMA networks like infiniBand and Myrinet reduce
communication overhead by overlapping communication with computation. For
the overlap to be more effective, we propose a source-to-source transformation
scheme by automatically restructuring message-passing codes. The extensions
to control-flow graph can accurately analyze the message-passing program and
help perform data-flow analysis effectively. This analysis identifies the minimal
region between producer and consumer, which contains message-passing func-
tional calls. Using inter-procedural data-flow analysis, the transformation
scheme enables the overlap of communication with computation. Experiments
on the well-known NAS Parallel Benchmarks show that for distributed memory
systems, versions employing communication-computation overlap are faster
than original programs.

Keywords: Parallel compiling; Communication optimization; Control-flow
analysis; Source-to-source transformation.

1 Introduction

Message-passing is widely used in parallel programs and is a standard interface for
message-passing parallel programs written in C, C++, or Fortran that supports point-
to-point communications (send, receive, isend, ireceive) and collective operations
(broadcast, gather, scatter, alltoall, alltoallv). The algorithm presented in this paper is
applicable to message-passing codes. Our platform is a set of sixteen processor nodes,
connected with an infiniBand switch. Current infiniBand switches have Remote Di-
rect Memory Access (RDMA) capability and support that non-blocking communica-
tion can progress concurrently with computation.

The benefit of overlapping communication and computation in parallel computing
has been extensively studied in the past decade. We can classify previous works into
three kinds. Some of researches are achieved by compiled methods [1, 2, 3, 4, 5];
some of them have been performed in the field of Global Address Space languages [6,
7, 8] or achieved by particular hardware [9, 10, 11]. However, these techniques may
be effective for overlapping communication and computation only in a single loop. In

 Automatic Transformation for Overlapping Communication and Computation 211

this paper, we present a transformation scheme to overlap communication with com-
putation using inter-procedural data-flow analysis.

Compared with previous researches, our main contributions are as follows:

 Using inter-procedural data-flow analysis to find the minimal region from pro-
ducer to consumer in context of message-passing programs.

 We propose a transformation scheme to overlap communication with computation.
 We evaluate some NAS benchmarks to validate our transformation.

The rest of this paper is organized as follows. Section 2 gives the algorithm to cre-
ate the control-flow graph for message-passing programs. Section 3 describes a
source-to-source transformation scheme to optimize the parallel programs. Section 4
evaluates the performance of NAS benchmarks using our transformation algorithm.
Section 5 places this paper in the context of related work. Section 6 presents
conclusions.

2 Control-Flow Graph for Message-Passing Program

The compiler must characterize the control-flow and the data-flow of programs, so
that the programs can be optimized in next step. It is regrettable that the previous
control-flow graph does not consider the message-passing call, which can result in
less precise and even incorrect analysis results. To resolve these problems, Shires et
al. [12] give an extension to the control-flow graph called the MPI-CFG. A motiva-
tion example will be given in figure1, which is a generic code segment in SPMD
(Single Process, Multiple Data) parallel program. The array dum is communicated
between statement S1 and S2. In figure 2 MPI-CFG contains control-flow edges rep-
resented with solid lines and a communication edges represented with dash lines. This
is the start point of our work.

Fig. 1. A code segment of SPMD program

212 C.J. Hu et al.

Fig. 2.The MPI-CFG of the code segment presented in Figure1

3 The Overlap of Communication and Computation

There are two challenges involved in data-flow analysis. The first challenge is to
identify message-passing variables and characterize corresponding data accesses. The
second challenge is that producer-consumer data-flow analysis need to be performed
to ensure communication-computation overlap.

3.1 Inter-procedural Data-Flow Analysis for Message-Passing Programs

To characterize and analyze data accesses in message-passing program, we perform
the inter-procedural dataflow analysis for message-passing variables. Message-
passing variable is defined as data that may be communicated or related to commu-
nication data, such as the parameters in message-passing call and the compiler
identifies these message-passing variables using the algorithm described in Figure
3. In Figure 3, we first locate communication statements, and then obtain their pa-
rameters and functional calls. If the parameters are communicated through commu-
nication statement, we add these parameters into our Message-passing Variables
list. If the communication statement has function calls, we should go into these
functions and get parameters from these calls, and then add these parameters into
our list. Finally, our list is a set of variables that may be communicated or related to
communication data.

 Automatic Transformation for Overlapping Communication and Computation 213

Fig. 3. Algorithm to create list of message-passing variables

Fig. 4. Algorithm to construct the minimal region from producer to consumer

214 C.J. Hu et al.

3.2 Constructing the Minimal Region from the Producer to Consumer

In this section we give producer-consumer relationship analysis which can be applied
at any level. If the statement S1 precedes S2 in execution order, then S1 < S2. De-
pendence between two statements in program is relation that constrains their execu-
tion order and control dependence constrain that arises from control-flow graph. Data
dependence arises from flow of data. Therefore, we will give the types of producer-
consumer dependencies. If S1 < S2, and S1 sets value and later S2 uses it, then call it
producer-consumer. If S1 < S2, and S1 uses some variable value and S2 sets it, then
call it anti producer-consumer. We treat producer-consumer and anti producer-
consumer differently.

To expose the maximum available opportunity for overlapping communication
with computation, the algorithm shown in Figure 4 resolves the minimal region from
producer to consumer, which contains the communication function calls. Each vari-
able could be produced and be consumed in multi places in the program, and we only
pay attention to the minimal region from the producer to the consumer. Getting vari-
able from the Message-passing Variables list which is described in Figure 3, we lo-
cate the places that produce this variable and then we select the place called min-
Place_P that is the minimal place from the producer to the communication statement
which contains variable. Then we choose the place called minPlace_Q that is the
nearest place consuming the variable after communication statement. Finally, our
minimal region is from minPlace_P to minPlace_Q.

3.3 Transformation Algorithm

We classify the communication patterns into two cases, blocking communication and
non-blocking communication. To overlap communication and computation, messages
are initiated early using non-blocking sends/receives and completed just before the
consumption point at the receiver with a wait.

Fig. 5. Transformation algorithm for overlapping communication and computation

 Automatic Transformation for Overlapping Communication and Computation 215

MPI provides a direct interface to non-blocking point-to-point operations, while
non-blocking collective operations to overlap communication and computation are not
directly supported by the MPI standard. For blocking communication, we change it
into non-blocking communication using the techniques of Hoefler et al [13, 14]. In
other words, we change MPI_Send into MPI_Isend, MPI_Receive into MPI_Ireceive,
and get the non-blocking communications including MPI_Ibcast, MPI_Igather,
MPI_Iscatter, MPI_Ialltoall and MPI_Ialltoallv. Since collective communication and
point-to-point communication are used in a different way, they should be considered
separately.

We give the transformation algorithm presented in Figure5. The algorithm based on
the minimal region from producer to consumer described in Figure5 and guarantee the
maximization of overlapping communication and computation.

4 Experimental Results

To evaluate the effect of our strategy, the performance comparisons between the
original program and our optimized program using our transformation algorithm. The
experimental environment is a set of sixteen processor nodes, connected with a high-
performance infiniBand switch. Each node has an Intel Xeon 3.0G processor with
1024KB L2 Cache, and the switch has a Remote Direct Memory Access (RDMA)
capability, whereby non-blocking message-passing communication can progress con-
currently with computation. The Operating System is RedHat Linux version FC3,
with Kernel 2.6.9 and we use MVAPICH2 1.0[15] for communication over Infini-
Band. Time is measured by inserting MPI_Wtime() calls before and after the region
we want to execute.

To validate the transformation scheme, we design several experiments implement-
ing the algorithm of overlapping communication and computation using data-flow
analysis to apply to NAS benchmarks. The NAS parallel benchmarks [16] are a set of
programs designed originally to evaluate supercomputers. We use NPB 2.4 [17] im-
plementation written in MPI and give some experiments based on the NAS parallel
programs which confirm to our algorithm, such as LU, IS, BT, MG.

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

Communication available for Overlap in CLASS=A

Computation available for Overlap in CLASS=A

Communication available for Overlap in CLASS=B

Computation available for Overlap in CLASS=B

Fig. 6. Performance in LU benchmark

216 C.J. Hu et al.

Figure6 shows the performance of LU benchmark before and after optimized pro-
gram. The transformed program succeeds in tolerating the communication latency and
reducing the execution time by almost from 10% to 17% going from two to sixteen
nodes both in class A problem size, while reducing time from 5% to 17% in class B
problem size.

Figure7 shows the time taken in communication and computation available for
overlap both in class A problem size and class B problem size in LU benchmark. The
time taken in communication available for overlap is close to the time taken in com-
putation and it occupies a large proportion in the parallel program. Therefore, opti-
mized program of LU benchmark succeeds in reducing the execution time taken in
parallel program.

Figure8 shows the performance of MG benchmark while Figure9 shows the
communication and computation available for our algorithm. The time taken in com-
munication available for overlap is much larger than the time taken in computation.
Although the time spent in communication occupies a large proportion in the parallel
program, the actual time spent in overlapping is relatively low. In Figure 8 the
transformation algorithm reduces the execution time only from 5% to 8%. Therefore,

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Fig. 7. Communication and computation available for overlapping in class A and class B prob-
lem size (LU benchmark)

0

10

20

30

40

50

60

70

2 4 8 16

Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Fig. 8. Performance in MG benchmark

 Automatic Transformation for Overlapping Communication and Computation 217

0

2

4

6

8

10

12

14

2 4 8 16

Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

Communication available for Overlap in CLASS=A

Computation available for Overlap in CLASS=A

Communication avalable for overlap in CLASS=B

Computation availabler Overlap in CLASS=B

Fig. 9. Communication and computation available for overlapping in class A and class B prob-
lem size (MG benchmark)

0

5

10

15

20

25

30

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

original program in CLASS=A optimized program in CLASS=A

original program in CLASS=B optimized program in CLASS=B

Fig. 10. Performance in IS benchmark

0

1

2

3

4

5

6

7

8

2 4 8 16
Number of processors

T
i
m
e
(
i
n

s
e
c
o
n
d
s
)

communication avaiable for overlap in CLASS=A

Computation available for overlap in CLASS=A

Communication available for overlap in CLASS=B

Computation available for overlap in CLASS=B

Fig. 11. Communication and computation available for overlapping in class A and class B
problem size (IS benchmark)

transformation algorithm achieves good performance only if the time taken in com-
munication available for overlap is close to the time taken in computation. The time
taken in available to overlap occupies relatively low in the whole parallel program
execution in BT benchmark, so it does not show an obvious result in this benchmark

218 C.J. Hu et al.

Figure10 shows the performance of IS benchmark while Figure11 shows the com-
munication and computation available for our algorithm. It is obviously seen from
Figure 11 that the descent speed of computation is faster than the descent speed of
communication in going from two to sixteen nodes. On two to four nodes, the time
taken in communication available for overlap is lower than the time taken in computa-
tion, while on eight to sixteen nodes the time taken in communication available for
overlap is larger than the computation. Since the time taken in communication avail-
able for overlap is close to the time taken in computation and the time occupies a
large proportion in the parallel program execution, Figure 10 shows that the optimized
program can reduce the time from 11% to 39% in class A problem size and from
17% to 22% in class B problem size.

From the above observations, the improvement of performance depends on the
following aspects. The first aspect is the proportion of actual time for overlapping
occupied in parallel programs. The second one is the time taken in communication
should be close to the time taken in computation available for overlap.

Even after our overlap communication and computation, the communication vol-
ume is still very high. However, overlap allows us to tolerate the communication
latency considerably.

5 Related Work

Control-flow frameworks have been extended by Shires et al. [12], which represents
the semantics of message-passing by including communication edges between mes-
sage-passing procedure calls. This control-flow graph can not describe non-blocking
communication accurately. To resolve this problem, our analysis contains inter-
procedural in the control-flow graph and inter-procedural in the data-flow graph.

Reducing communication latency using overlap communication and computation
has been used in the past decade. HPF compilers [18] proposed a notion of posting of
sends as early as possible and receiving as late as possible in order to overlap com-
munication with computation. Some later approaches have suggested the overlapping
of communication and computation [2, 19, 20, 21, 22], but they are limited to overlap
them in a single loop.

Hoefler et al. [13, 14] gives non-blocking collective operations which are obvious
extensions to message-passing. Kennedy et al. [23] presents a communication place-
ment framework that reduces communication latency. The difference between us is
that the communication placement can be determined by a sequence of simple unidi-
rectional analyses while we add communication edges and use inter-procedural analy-
sis in control-flow graph. This is the important starting points for our work. In our
previous work [24], we pipelined an irregular loop by splitting inspector phase and
using corresponding dependence analysis.

To the best of our knowledge, this paper presents the first approach to overlap
communication and computation by the inter-procedural analysis of message-passing
programs. Algorithm could be used in both point-to-point communications and collec-
tive operations.

 Automatic Transformation for Overlapping Communication and Computation 219

6 Conclusions

In this paper, we present a transformation scheme to achieve overlapping communica-
tion and computation based on inter-procedural data-flow analysis. The data-flow
analysis gives the RSD of each variable in message-passing calls and the minimal
region from producer to consumer. Finally, we give transformation scheme to accom-
plish our optimization. To study the impact of our optimization, we give some ex-
periment results to illustrate that our strategy is useful for improving the performance
of the message-passing programs.

Acknowledgments

The research is partially supported by the Key Technologies Research and Develop-
ment Program of China under Grant No.2006038027015, the Hi-Tech Research and
Development Program (863) of China under Grant No. 2006AA01Z105 and No.
2008AA01Z109 Natural Science Foundation of China under Grant No.60373008, and
by the Key Project of Chinese Ministry of Education under Grant No. 106019 and
No.108008.

References

1 Basumallik, A., Eigenmann, R.: Optimizing Irregular Shared-Memory Applications for
Distributed-Memory Systems, PPOPP, New York, USA, March 29-31 (2006)

2 Fishgold, L., Danalis, A., Pollock, L., Swany, M.: An automated approach to improve
communication-computation overlap in cluster. NIC Series, vol. 33, pp. 481–488. John
von Neumann Institute for computing, Julich (2006)

3 Danalis, A., Pollock, L., Swany, M.: Automatic MPI application transformation with AS-
PhALT. IEEE, Los Alamitos (2007)

4 Danalis, A., Kim, K.-Y., Pollock, L., Swany, M.: Transformations to Parallel Codes for
Communication-computation Overlap. ACM, New York (2005)

5 Kreaseck, B., Carter, L., Casanova, H., Ferrante, J.: On the Interference of Communication
on Computation in Java. IEEE, Los Alamitos (2004)

6 El-Ghazawi, T.A., Carlson, W.W., Draper, J.M.: UPC specification, v. 1.1 (2003),
http://upc.gwu.edu/documentation

7 Hilfinger, P., Bonachea, D., Gay, D., Graham, S., Liblit, B., Pike, G., Yelick, K.: Titanium
language reference manual. tech report ucb/csd-01-1163, u.c. berkeley (November 2001)

8 Numrich, R.W., Reid, J.K.: Co-Array Fortran for parallel programming. ACM FortranFo-
rum 17(2), 1–31 (1998)

9 Goumas, G., Sotiropoulos, A., Koziris, N.: Minimizing completion time for loop tiling
with computation and communication overlapping. In: Proceedings of the 15th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2001), April 23–27, 2001,
p. 39. IEEE Computer Society, Los Alamitos (2001)

10 Gupta, S.K.S., Huang, C.-H., Sadayappan, P., Johnson, R.W.: Atechnique for overlapping
computation and communication for block recursive algorithms. Concurrency: Practiceand
Experience 10(2), 73–90 (1998)

220 C.J. Hu et al.

11 Sohn, A., Biswas, R.: Communication studies of dmp and smp machines. Technical Report
NAS-97-005,NASA Ames ResearchCenter (March 1997)

12 Shires, D., Pollock, L., Sprenkle, S.: Program Flow Graph Construction for Static Analysis
of MPI programs. In: International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 1999) (June 1999)

13 Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis of Non-
Blocking Collective operations for MPI. In: SC 2007, Reno, Nevada, USA, November 10-
16 (2007)

14 Hoefler, T., Lumsdaine, A.: Optimizing non-blocking collective operations for infiband
(April 2008); Accepted for publication at the CAC 2008 in conjunction with the IDPDS
2008

15 http://mvapich.cse.ohio-state.edu
16 http://www.nas.nasa.gov/software/NPB
17 Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R., Fine-

berg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V.,
Weeratunga, S.: The NAS parallel benchmarks, Tech. Rep. RNR-94-007, NASA Ames

18 Gupta, M., Miskiff, S., Schonberg, E., Seshadri, V., Shields, D., Wang, K., Ching, W.,
Ngo, T.: An HPF compiler for the IBM SP2. In: Proceedings of Supercomputing 1995,
San Diego, CA (1995)

19 Ishizaki, K., Komatsu, H., Nakatani, T.: A loop transformation algorithm for communica-
tion overlapping. International Journal of Parallel Programming 28(2), 135–154 (2000)

20 Tseng, E.H.Y., Gaudiot, J.L.: Communication generation for aligned and Cyclic(k) distri-
butions using integer lattice. IEEE Transactions on Parallel Distributed Systems 10(2),
136–146 (1999)

21 Lancu, C., Husbands, P., Chen, W.: Message Strip Mining Heuristics for High Speed Net-
works. In: VECPAR (2004)

22 Bell, C., Bonachea, D., Nishtala, R., Yelich, K.: Optimizing Bandwidth Limited Problems
Using One-Side communication and overlap. In: 20th International parallel & Distributed
Processing Symposium (IPDPS) (2006)

23 Kennedy, K., Sethi, A.: A Communication Placement Framework with Unified Depend-
ence and Data-flow Analysis. In: Proceeding 3rd International Conference on High Per-
formance Computing, December 19-22, 1996, pp. 201–208 (1996)

24 Hu, C., Yao, G., Wang, J., Li, J.: OpenMP Extensions for Irregular Parallel Applications
on Cluster. In: Chapman, B.M., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D.
(eds.) IWOMP 2007. LNCS, vol. 4935. Springer, Heidelberg (2008)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 221–231, 2008.
© IFIP International Federation for Information Processing 2008

Cooperative Communication System for Parallel
Computing Agents in Multi-cluster Grid

Chen Qing-Kui and Wei Wang

School of Computer Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China

chenqingkui@tom.com

Abstract. The idle computational resources of CSCW environment that is com-
posed of computer clusters are mined to construct the multi-cluster grid in order
to support the computation-intensive tasks. For fitting the state changes of idle
computing resources during the computing process, the techniques of coopera-
tion and migration agents are adopted. Through the concurrent dataflow, the
supper element, and the density factor, the dynamic buffer pool (DBP) was built
up. By using of the Grid techniques, the cooperative computing agent, the coop-
erative communication agent, and DBP, a cooperative communication system
(CCMS) for parallel computing agent was designed and implemented. The ex-
perimental results show that CCMS can increase the speed-up of parallel com-
puting task. It can be fit for the computation in CSCW based on Internet.

Keywords: cooperative communication agent; dynamic buffer pool; multi-
cluster grid; parallel computing.

1 Introduction

With the rapid development of information techniques and Internet, the research re-
sults based CSCW became the key techniques building enterprise information infra-
structure[1].The computer aided design based on cooperative work environments is
playing the more and more important role in the business behavior of enterprise to-
day. Especially, CSCW work contains a lot of computation-intensive task to be proc-
essed in some high performance computes. On the other hand, Intranet is more and
more extended and a great deal of cheap personal computers are distributed every-
where, but the use rate of their resources is very low. The researches of papers [2, 3]
point out that many resources is idle in most network environments at a certain time.
Even it is the busiest time of a day, still one third of their workstations weren’t used
completely. So the paper [4] proposed a framework how to min and use the idle
computational resources of CSCW environment that composed of multi-clusters con-
nected by Intranet. It uses the idle computer resources in CSCW environment to con-
struct a Visual Computational System (VCE). VCE can support two kinds of migra-
tion computations: (1) the Serial Task based on Migration (STM); (2) the Task based
on Data Parallel Computation (TDPC). For adapting these heterogeneous and dy-
namic environments, we use the Grid [5] techniques, multi-agent [6, 7] techniques

222 Q.-K. Chen and W. Wang

and cooperative leaning model of agent [8] and min the idle resource of CSCW envi-
ronment to construct multi-cluster grid (MCG). Because of the migration of coopera-
tive computing agent in MCG, the communication resources in computing node are
changed frequently. So the communication efficiency is decreased gradually along
with the increasing of cooperative computing team scale. The study of communica-
tion techniques [9~12] becomes very important. Paper [9] proposed a synchronous
communication mechanism for parallel computing. Paper [10,11] study the mobile
agent communication problem. Paper [12] implements a middleware for agent com-
munication. But all these methods can’t satisfy the need of parallel computing in
dynamic multi-cluster grid.

This paper proposed a cooperative communication system for parallel computing
agents in multi-cluster grid that is composed of many computer-clusters connected by
Intranet. By using of dynamic buffer blocks and concurrent dataflow technique, we
construct the dynamic buffer pool in every computing node; through the cooperative
communication agent, global directory and dynamic buffer pool, we build up a inde-
pendent cooperative communication system in MCG. This system can support the
grid computing and pervasive computing based on task-migratory mechanism, and it
can fit the heterogeneous and dynamic network Environment. The experimental re-
sults show that this model can increase the speed-up of parallel cooperative comput-
ing and use effectively the memory resources for communication buffers.

2 Architecture of MCG

We use of the idle computational resources (e.g. the time that the users take a rest or
do the other works and the computer is idle) in CSCW environment, to support the
computation-intensive tasks of CSCW. The Computation-Intensive Task is that it
needs very long time to run, and it also needs high performance computer to support,
such as the finite element analysis. For describing this communication model, we
introduce some definitions:

(1) Computing Node (CN) is defined as CN (id, CT, Am, CMA, AS), where id de-
notes the identifier of CN; CT denotes the type of computing node; Am denotes the
main control agent of CN; CMA is the cooperative communication agent of CN; AS is
the set of the control and computing agents running on CN.

(2) Computer cluster (CC) is defined as CC (Ma, CS), where Ma denotes the main
computer of CC; CS= {CN1, CN2…CNp} denotes the set of all computing nodes
which CC includes.

(3) Computing Agent (CA) is defined as CA (id, PRG, BDI, KS, CE), where id
denotes the identifier of CA; PRG denotes the executable program set of CA; BDI is
the description of its BDI; KS is its knowledge set; CE is its configuration environ-
ment.

CA is the basic element to execute computation task. If a CA could complete inde-
pendently the task, we call it as the independent computing agent (ICA). If a CA
couldn’t complete independently the task, and it must cooperate with others, we call it
as the cooperative computing agent (CCA).

 Cooperative Communication System for Parallel Computing Agents 223

(4) Cooperation Computing Team (CCT) is defined as CCT (id, Am, CAS, BDI,
CKS, CCE), where id denotes the identifier of CCT; Am denotes the main control
agent of CCT; CAS denotes the set of all cooperative computing agents which CCT
includes; BDI is the description of its BDI; CKS is its knowledge set. CCE is its con-
figuration environment. CCT can support the data parallel computation in the logical
computer cluster.

(5) Global Computing Group (GCG) is defined as GCG (id, Am, ICAS, CCTS,
GKS, GCE), where id denotes the identifier of GCG; Am denotes the main control
agent of GCG; ICAS denotes the set of ICA which GCG includes; CCTS denotes the
set of CCT which GCG includes; GKS is its knowledge set. GCE is its configuration
environment.

Many tasks are executed together in GCG during the same time, and the tasks are
calculated by a lot of ICAs or CCTs.

(6) Cooperative Communication Agent (CMA) is defined as CMA (id, CN, DBP,
BDI, CKS, CCE), where id denotes the identifier of CMA; CN denotes the computing
node on which CMA runs; DBP is the dynamic communication buffer pool of CMA;
BDI is the description of its BDI; CKS is its knowledge set. CCE is its configuration
environment. Every a computing node has a CMA, and CMA do all communication
work for computing and control in the computing node.

(7) Cooperative Communication System (CCMS) is defined as CCMS (CCAS,
GD), where CCAS denotes the set of all CMAs in a parallel computing environment
composed of many computing node ; GD denotes the global directory of CCMS.

(8) Multi-cluster Grid (MCG) is defined as MCG (Ma, CCS, N, R, GCG, CCMS),
where Ma denotes the master computer of MCG; CCS denotes the set of all computer
clusters which MCG includes; N is the connection network set of MCG; R is the rules
of connections; GCG is the global computing group; CCMS is the cooperative com-
munication system.

Fig. 1. The example of the relation between CCT and CMAS in MCG

CMA is the only communication component in a computing node and CMA is on
this computing node forever. During the computing process, the migration component
only is the cooperative computing agent. The figure 1 shows that the cooperative

224 Q.-K. Chen and W. Wang

computing agent 1 has been migrated from computing node 1 into computing node 4.
But the CMA of CN1 is still in CN1.

3 CCMS Structure

(1) Buffer block (BB) is defined as a communication unit, and it is composed of a
certain size memories. Its size be defined as |B|.

(2) Concurrent Dataflow (CDF) There is a communication relation between coop-
erative computing agent CCAi and CCAj (i≠j), Ci is a CN on which CCAi runs, Cj is a
CN on which CCAj runs. CMAi and CMAj are two cooperative communication agents
which run on Ci and Cj respectively. DFij is the dataflow from CCAi to CCAj, DFji is
the dataflow form CCAj to CCAi. During the computing and migration process, there
are many dataflow among the computing agents at the same time. These dataflow are
call as concurrent dataflow.

A dataflow DFij is a sequence of buffer blocks, and it has a density factor k (k≥0)
that is the buffer block numbers from CCAi to CCAj in a unit time. When k is 0, DFij
is closed.

(3) Dynamic Buffer Pool (DBP) is defined as DBP (m, RM, RFC, wr, SM, SFC, ws),
and its main parts are described as follows:

● m is the numbers of cooperative communication agents which communicate with
Ci; there are 2m data flows for Ci . There are m data flows for sending and m data
flows for receiving.
●RM is m×wr matrix and it is the receiving buffers that store data received from

other m concurrent data flows; it is called as receiving buffer matrix. Its matrix ele-
ment is called as supper element, and it has two formats: ① null; ② compose of k
(k≥0, k is the density factor) buffer blocks that size is |B|; wr is the numbers of column
of RM.

Every a row of RM is a dataflow that save data received from other cooperative
computing agent. So RM[i] (1≤i≤m) is the ith receiving dataflow.
● RFC is m vector and its element is the density factor of dataflow; Namely,

RFC[i] is the density factor of dataflow RM[i].
● SM is m×ws matrix and it is the sending buffers that store data sent into other m

concurrent data flows, and it is called as sending buffer matrix. Its matrix element is
also supper element; ws is the numbers of column of SM.
● SFC is m vector and its element is the density factor of dataflow; Namely,

SFC[i] is the density factor of dataflow SM[i].

(4) Global Directory（GD）is defined as a relation table GD (CCAid, CNid, CCTid,
sta), where CCAid denotes the identifier of CCA; CNid denotes the identifier of com-
puting node on which CCA runs; CCTid is the identifier of CCT which CCA belongs
to; sta is the state of CCA, and sta∈{‘ready’, ‘computing’, ‘migration’}.The row
numbers of GD be written as p and its means is that there are p cooperative comput-
ing agents in MCG at present.

(5) Buffer Block Set（BBS）is the set of all communication buffer blocks in a com-
puter node, and its size is |B|×NB.

 Cooperative Communication System for Parallel Computing Agents 225

CCMS structure is shown as the figure 2. There are three cooperative computing
agents distributed into three computing nodes. Figure 2 shows that communication
method of these cooperative computing agents through CCMS.

Fig. 2. The structure of CCMS composed of three computing nodes

4 Descriptions of CCMS Process

4.1 CCMS Start-Up

Algorithm 1 (Start-up and Calculation of CCT)

(1) GCG gets a parallel job and constructs a CCT= {CCA1, CCA2,…,CCAt};the
identifier of CCT is cno;

(2) GCG gets a logical computer cluster LCC= {C1, C2… Ct} from MCG;
(3) For 1≤i≤t, GCG do step(4) repeatedly;
(4) send CCAi into Ci; append a new tuple NT into GD and do as follows: {

NT.CCAid= identifier (CCAi); NT.CNid=Ci; NT.CCTid=cno; NT.sta=‘ready’;}
(5) GCG send ‘initialization’ to CMAi (1≤i≤t), which CMAi is the cooperative

communication agent in computing node Ci;
(6) CMAi (1≤i≤t) does algorithm 2 in parallel in order to initialize the dynamic

buffer pool on computing node Ci;
(7) GCG start all cooperative computing agents CCA1, CCA2,… CCAt to complete

the parallel job cooperatively;
(8) If the migrations occur during the computing process, GCG starts migration

process [4] and all CMAs do algorithm 3 to adjust CCMS;
(9) Repeat to do step (8) (9) until the parallel job has been finished.

4.2 Operation for CCMS

Algorithm 2 (Initialization of DBP)
CCT= {CCA1, CCA2…CCAt} is a cooperative computing team and LCC= {C1, C2…
Ct} is the logical computer cluster which is supporting CCT. GD is global directory.

226 Q.-K. Chen and W. Wang

For initializing the dynamic buffer pools of CCMS, all CMAi (1≤i≤t) do as follows
cooperatively each other.

(1) For (1≤j≤t∧j≠i) do (2)~(5);
(2) CCAi calculates the data size ds which will be sent into CCAj ;
(3) CCAi calculates the density factor kij of dataflow from CCAi to CCAj by ds;

CMAi constructs dataflow DFij (from CCAi into CCAj) according to ds and adds DFij
to SM of CMAi; CMAi sends ds into CMAj; CMAj constructs dataflow DFij (from CCAi
into CCAj) according to ds and adds DFij to RM of CMAj;

(4) CCAj calculates the density factor kji of dataflow from CCAj to CCAi by ds;
CMAj constructs dataflow DFji (from CCAj into CCAi) according to ds and adds DFji
to SM of CMAj; CMAj sends ds into CMAi; CMAi constructs dataflow DFji (from CCAj
into CCAi according to ds ; CMAi adds DFji to RM of CMAi;

(5) CMAi gets the tuple NT form GD by CCAi and inform CCMS to replace NT.sta
with ‘ready’;

(6) End.

Algorithm 3 (Adjustment for CCMS After Migration)
CCT={CCA1, CCA2… CCAt} is a cooperative computing team and LCC={C1, C2…
Ct} is the logical computer cluster which is supporting CCT. GD is global directory.
Suppose that MIG={CCAm1, CCAm2… CCAmg} is the subset of CCT and all coopera-
tive computing agents in MIG will be migrated from LEAVE= {Cm1, Cm2… Cmg} into
new computing node set NLC={NCm1, NCm2…NCmg}. There is LEAVE ⊂ LCC. For
simple description, suppose that CCAmi (1≤i≤g) will be migrated into computing node
NCmi. When all cooperative computing agents in MIG finished their migration proc-
ess, for adjusting the dynamic buffer pools of CCMS, all CMAmi (1≤i≤g, CMAmi is the
cooperative communication agent of computing node Cmi) do as follows cooperatively
each other.

Set NMIG=CCT-MIG; /*agent set of no-migration*/
Snmig is the set of cooperative communication agents of computing nodes in LCC-

LEAVE; Smig is the set of cooperative communication agents of computing nodes in
NLC; Sleave is the set of cooperative communication agents of computing nodes in
LEAVE;

/*Delete the old dataflow of migration agents from CCMS*/

(1) For CMAj
∈Sleave∧1≤j≤g do (2)(3);

(2) CMAj gets its CCAj from MIG and informs CCMS to replace GD.sta (which
CCAj has) with ‘migration’;

(3) For CMAi
∈Snmig∧1≤i≤t-g do {CMAi delete the dataflow DFij from its DBP;

CMAj delete the dataflow DFji from its DBP ;}
/* Construct new dataflow among CCAs in MIG */
(4) For CMAi

∈Smig∧1≤i≤g do (5);
(5) For CMAj

∈Smig∧j≠i∧1≤i≤g do (6) (7);
/* CCAi is active operator */
(6) CCAi calculates the data size ds which will be sent into CCAj ; CCAi calculates

the density factor kij of dataflow from CCAi to CCAj by ds; CMAi constructs dataflow
DFij (from CCAi into CCAj) according to ds and adds DFij to SM of CMAi; CMAi

 Cooperative Communication System for Parallel Computing Agents 227

sends ds into CMAj; CMAj constructs dataflow DFij (from CCAi into CCAj) according
to ds and adds DFij to RM of CMAj;

 / * CCAj is active operator */
(7) CCAj calculates the density factor kji of dataflow from CCAj to CCAi by ds;

CMAj constructs dataflow DFji (from CCAj into CCAi) according to ds and adds DFji
to SM of CMAj; CMAj sends ds into CMAi; CMAi constructs dataflow DFji (from CCAj
into CCAi) according to ds and adds DFji to RM of CMAi; }

/* Construct new dataflow between NMIG and MIG */
(8) For CMAi ∈Smig∧1≤i≤g do (9);
(9) For CMAj ∈Snmig∧1≤i≤t-g do (10);
(10) CCAi calculates the data size ds which will be sent into CCAj ; CCAi calculates

the density factor kij of dataflow from CCAi to CCAj by ds; CMAi constructs dataflow
DFij (from CCAi into CCAj) according to ds and adds DFij to SM of CMAi; CMAi
sends ds into CMAj; CMAj constructs dataflow DFij (from CCAi into CCAj) according
to ds and adds DFij to RM of CMAj; CCAj calculates the density factor kji of dataflow
from CCAj to CCAi by ds; CMAj constructs dataflow DFji (from CCAj into CCAi)
according to ds and adds DFji to SM of CMAj; CMAj sends ds into CMAi; CMAi con-
structs dataflow DFji (from CCAj into CCAi) according to ds and adds DFji to RM of
CMAi;

(11) CMAi (CMAi∈Smig∪Snmig) gets the tuple NT form GD by CCAi and inform
CCMS to replace NT.sta with ‘computing’;

(12) End.

4.3 CCMS Communication Process

CCT= {CCA1, CCA2…CCAt} is a cooperative computing team and LCC= {C1, C2…
Ct} is the logical computer cluster which is supporting CCT. GD is global directory.
CMAi (1≤i≤t) is the cooperative communication agent of computing node Ci. Suppose
that CCAi (1≤i≤t) had been allotted on Ci. Set SCMA= {CMA1, CMA2… CMAt}.

Algorithm 4 (Sending Data Process)
The sending data process includes two threads: one is the data gather thread (DGT)
from local CCA; another is the data sending thread (DST) through network adapter.
DGT process is as follows:

(1) Do step (2) (3) repeatedly;
(2) CCAi does the local computing work and produces dada d; CCAi transfer d to

local cooperative communication agent CMAi;
(3) CMAi decides the destination CCAj(1≤i≤t, j≠i) by d and gets k (k is density fac-

tor)buffer blocks B1, B2…Bk from BBS ; CMAi saves d into B1, B2…Bk and builds up a
supper elements B={ B1, B2…Bk }; CMAi adds B into dataflow DFij (that is dataflow
from CCAi to CCAj);

DST process is as follows:

(1) Do step (2) (3) repeatedly;
(2) Scan all dataflow DFij (1≤i≤t, 1≤j≤t) of SM in DBP;
(3) If DFij is not NULL then {get data d from DFij ; send d into CMAj which runs

on Cj; free the buffer blocks;}

228 Q.-K. Chen and W. Wang

Algorithm 5 (Receiving Data Process)
The receiving data process includes two threads: one is the data receiving thread
(DRT) from network; another is the data transfer thread (DTT) that transfer data to
local CCA. DRT process is as follows:

(1) Do step (2) ~ (4) repeatedly;
(2) Receive data d from the network adapter;
(3) Decide the data source CCAj by d;
(4) get the density factor k of dataflow DFji from CCAj to CCAi; get k buffer blocks

B1, B2…Bk from BBS; Save d into B1, B2…Bk and build up a supper elements B= {B1,
B2…Bk} ; add B into dataflow DFji of RM;

DTT process is as follows:

(1) Do step (2) (3) repeatedly;
(2) Scan all dataflow DFij (1≤i≤t, 1≤j≤t) of RM in DBP;
(3) If DFij is not NULL then {get data d from DFij and free the buffer blocks which

d used; transfer d into CCAi which runs on Ci;}

4.4 Computation for Density Factor

Suppose that CCAi and CCAj is a pair of cooperation computing agents and DFij is the
dataflow from CCAi to CCAj. The calculation process for density factor k of DFij is as
follows:

(1) CCAi estimates the communication data size s from CCAi to CCAj per unit time;

(2) k= ⎣ ⎦||/ Bs +1.

5 Analysis and Experiments

5.1 Analysis for CCMS

CCMS has many characteristics, they are as follows:

(1) Any a row of the matrix SM and RM of DBP is a concurrent dataflow that is a
logical channel between a pair of cooperative computing agents. CCMS use the Ma-
trix SM to implement the one-to-many communication; CCMS use the Matrix RM to
receive message from other many cooperative computing agents which runs on other
computing node. So CCMS can support the parallel computing.

(2)Every concurrent dataflow has a density factor. The size of density factor is the
communication data quantity of concurrent dataflow. We can adjust the value of den-
sity factor to control parallel dataflow.

(3)The element of SM and RM is called as the supper element, because it can be
composed of k buffer blocks. When k=0, the dataflow had been closed.

(4)SM and RM share the BBS space, so it can increase the use rate of memories for
buffer blocks.

 Cooperative Communication System for Parallel Computing Agents 229

5.2 Experiments

We built a MCG that is composed of 16 computers and 4 computer-clusters that con-
nected by Intranet. The computing tasks provided by MCG are the matrix opera-
tions and the linear programming. The CCT algorithms (Parallel algorithms based
on computer cluster) for the matrix operations and the linear programming are
given. The intranet clock is synchronous by GTS protocol. In order to make the
tasks to migrate as far as possible in the MCG, We make use of the random migra-
tion function RandMigration() and form the migration strategy during the test proc-
esses. The description for cooperative rules [8] is given. The experimentation
includes seven times, and each time has 12 hours, and the total amount is 84 hours.
Through the average values of the test information, we observe the operation results
of CCMS. We implement two communication models: One is CCMS which had
been implemented according to CCMS; another is BCMS (binding communication
system) which communication agent will be migrated with their cooperative comput-
ing agent together and it doesn’t adopt the DBP technique. The experiment results are
as follows:

There are four types of CCT scale: (1) CCT is composed of 2 CCAs; (2) CCT is
composed of 4 CCAs; (3) CCT is composed of 8 CCAs;(4) CCT is composed of 16
CCAs.

Experiment 1. The CCMS and BCMS speed-up, which are along with CCT scales
change, have been tested. The test result is shown as in the figure 3. This test result
shows that CCMS keeps linear speed-up and CCMS can support parallel computation
effectively.

Fig. 3. The speed-up of CCMS and BCMS

Experiment 2. The changes of memory resources for communication buffer in
CCMS and BCMS have been tested. The test result is shown as in the figure 4. This
test result shows that the numbers of CCMS memory resources become stable when
CCT scale type is 2. CCMS can increase the use rate of communication buffers.

230 Q.-K. Chen and W. Wang

Fig. 4. The memory size for communication buffer in CCMS and BCMS

Experiment 3. The response time along with the changes of density factor k=1, 2, 3,
4 have been tested. There are |B| =1MB. The test result is shown as in the figure 5.
This test result shows that CCMS can effectively support the communication work for
high density dataflow and it can be implemented by increasing the density factor of
dataflow.

Fig. 5. The changes of response time along with the changes of density factor

6 Analysis and Experiments

Because of the heterogeneous resources, the state changes of idle computing re-
sources during the computing process and the migration of cooperative computing
agent, the communication problem of agent become very important. Constructing
cooperative communication system, which is independent system from the computing
agent system, we can increase the speed-up of parallel computing task and effectively
use the memory resources for communication buffer.

Acknowledgement

We would like to thank the support of National Nature Science Foundation of China
(No.60573108), Shanghai Leading Academic Discipline Project (No.T0502) and the
Innovation Program of Shanghai Municipal Education Commission (No. 08ZZ76,
07ZZ92).

 Cooperative Communication System for Parallel Computing Agents 231

References

1. Raybourn, E.M., Newman, J.: WETICE 2002 Evaluating Collaborative Enterprises Work-
shop Report. In: Proceeding of the Eleventh IEEE international Workshops on enabling
technologies: Infrastructure for Collaborative Enterprises, pp. 11–17. IEEE Press, New
York (2002)

2. Markatos, E.P., Dramitions, G.: Implementation of Reliable Remote Memory Pager. In:
Proceedings of the 1996 Usenix technical Conference, pp. 177–190 (1996)

3. Acharya, A., Setia, S.: Using Idle Memory for Data-Intensive Computations. In: Proceed-
ings of the 1998 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pp. 278–279. ACM press, New York (1998)

4. Chen, Q.K., Na, L.: Grid Cooperation Computational System for CSCW. In: Proceedings
of the 10th IEEE International Conference on Computer Supported Cooperative Work in
Design, pp. 894–899. IEEE Press, New York (2006)

5. Foster, I., Kesselman, C.: The Grid: Blueprint for Future Computing Infrastructure. Mor-
gan Kaufmann Publishers, San Francisco (1999)

6. Osawa, E.: A Scheme for Agent Collaboration in Open MultiAgent Environment. In: Pro-
ceeding of IJCAI 1993, August 1993, pp. 352–358 (1993)

7. Wooldridge, M.: An Introduction to Multivalent System. John Wiley & Sons, Chichester
(2002)

8. Chen, Q.K.: Cooperation Learning Model of Agents in Multi-cluster grid. In: proceedings
of the 11th IEEE International Conference on Computer Supported Cooperative Work in
Design (CSCWD 2007), pp. 418–423. IEEE Press, New York (2007)

9. Franke, H., Dangelmaier, W., Klopper, B., Kosters, C.: Synchronous Communicating
Agents for Parallel Improvement in Transport Logistics. In: Artificial Intelligence and Ap-
plications(AIA 2004), Innsbruck, Austria (2004)

10. Mishra, S., Xie, P.: Interagent Communication and Synchronization Support in the DaA-
gent Mobile Agent-Based Computing System. IEEE transactions on parallel and distrib-
uted system 14(3), 290–306 (2003)

11. Venticinque, S., Di Martino, B., Aversa, R., Vlad, G., Briguglio, S.: Mobile Agents Based
Collective Communication: An Application to a Parallel Plasma Simulation. In: Guo, M.,
Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS,
vol. 4330, pp. 724–733. Springer, Heidelberg (2006)

12. Riley, P.: MPADES: Middleware for Parallel Agent Discrete Event Simulation. In:
Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp.
162–178. Springer, Heidelberg (2003)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 232–243, 2008.
© IFIP International Federation for Information Processing 2008

CPI: A Novel Three-Phase Algorithm for QoS-Aware
Replica Placement Problem*

Wei Fu, Yingjie Zhao, Nong Xiao, and Xicheng Lu

School of Computer, National University of Defense Technology, Changsha, P.R. China
lukeyoyo@tom.com

Abstract. QoS-aware replica placement decides how many replicas are needed
and where to deploy them to meet every request from individual clients. In this
paper, a novel three-phase algorithm, namely CPI, is proposed. By dividing can-
didate nodes into proper medium-scale partitions, CPI is capable to handle with
large-scale QoS-aware replica placement problem. Pharos-based clustering algo-
rithm obtains ideal grouping, and partition integrating method is developed to ob-
tain final replica policy. Theoretical analysis and experiments show that CPI has
lower computation complexity and good scalability. The replicating cost and up-
dating cost remains acceptable under different simulating conditions.

1 Introduction

Replication is the process of sharing resources so as to ensure consistency between
redundant copies. These copies are formally called replicas, which usually spread at
geographically distributed locations. As a simple but effective technique, replication
is widely employed in distributed systems [1-6]. Proper replica mechanism can spee-
dup response time, reduce network traffic, balance overload, as well as enhance data
reliability and fault-tolerance. Distributed databases [1], distributed file systems [2],
content distributing network [3, 4], P2P systems [5] and Data Grids [6] are some of
the most common scenarios to use replicas. Replica placement takes charge of a
proper replica policy. It decides how many replicas should be deployed and where to
locate them, which is very important to the effectiveness of replication.

Traditional replication researches aimed at optimize the global/average metrics as
much as possible. For example, Qiu [7] tried to minimize the average accessing delay,
and Cidon [8] aimed to spend the least communication messages. While an average
performance measure may be important from the system’s point of view, it does not
differentiate the various performance requirements of the individuals [9]. With the
rapid growth of time-critical applications, some researches [9-12] tried to provide
QoS-guaranteed replica service. Instead of only concerning about average metrics,
their first and foremost objective is to guarantee that EVERY individual request
should meet its QoS requirement, usually response time. They named it as QoS-
Aware Replica Placement problem (QARP for short), which has been proved to be
NP-Complete. Several heuristic algorithms have been presented to solve the problem,

* This paper is supported by National 863 High Technology Plan (NO. 2006AA01A118, NO.

2006AA01A106), and Chinese NSF (NO.60573135, NO. 60736013).

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 233

including Tang [9], Wang [10] and Fu [12]. However, they are all centralized meth-
ods and lack of scalability. Furthermore, the computation complexities are rather
high. Theoretically, the time complexities are about or even [9-11].

In order to overcome the difficulty, a novel three-phase algorithm CPI is presented
to solve large-scale QoS-aware replica placement problem. CPI divides the entire
problem into several medium-scaled problems. Then each sub-problem deals with its
own placement problem in parallel. Finally, all sub-problem solutions are integrated
to form a final solution. The main contributions of the paper are listed as follows:

1. A novel semi-distributed method CPI is proposed to solve large-scale QoS-aware
replica placement problem;

2. A pharos-based algorithm are invented for node clustering;
3. A simple but effective integration mechanism is introduced to obtain global place-

ment policy;

2 Related Work

In 2004, Tang and Xu put forward the QARP problem for the first time [9]. They
proved the replica-aware QARP to be NP-complete. Meanwhile, two families of heu-
ristic algorithms, named l-Greedy-Insert and l-Greedy-Delete respectively, are pro-
posed for optimal solution. The selection of l reflects a tradeoff between the time
complexity and the quality of solution. On the basis of their work, Jeon [11] gave
another proof of NP-hard property. He deduced it to be a minimum set cover problem.
With the help of matrix, a centralized algorithm based on the approximation algorithm
for minimum set cover problem was presented. Wang [10] proposed another heuristic
algorithm called Greedy-Cover inspired by set operations. Recently, Fu and Xiao et.al
[12] utilized vector operations to accelerate computation. The output replica is organ-
ized into a ring structure for concurrent updating.

However, all these solutions are classified as centralized algorithms. A dominate
node is required to collect communication cost between any two nodes, and the algo-
rithm will be performed in this single node. If the scale of network is small or medium
(e.g., < 1000), they work well. However, when the scale is a bit larger, the computa-
tion cost and memory cost will both increase sharply [10]. Either the time cost will be
so long, or it will cause the out of memory exception. We can confirm this judgment
from experimental results in section 6.

Generally speaking, all of them lack of scalability. And the loads are imbalanced.
While the dominate node is over-used, all the other nodes are almost idle. The power-
ful capabilities are not exploited.

3 Replication System Model and QoS-Aware Replica Placement
Problem Definition

In this section, a replication system model is introduced. Some servers are selected to
hold replicas, which are called replica nodes. The other servers are called non-replica
nodes. In this context, the terms “server” and “node” are regarded as the same thing.

234 W. Fu et al.

Let an undirected graph represent the server network, where is the set
of servers, denotes the set of links between these nodes. Each node is
identified by a global unique identifier. Without loss of generality, we use integer 0, 1,
2, …, n, where n = | | A storage function is assigned to node , representing
for the storage cost when a replica resides on it. Besides, Let denote the
communication cost between a pair of nodes and . If () , means
communication cost of the link between and . Otherwise, equals to the
smallest cost among all possible path from to .

QARP problem is defined on the basis of this model. Given an original data in a
source node labeled by the objective of QARP is to find a subset of nodes (i.e.,

 – { }). When each server in holds a copy from , any of the other nodes can
arrive at a replica node without violating its QoS restriction. At the same time, the
replicating cost should be minimized. Figure 1 illustrates a typical graph with
communication costs.

Fig. 1. This is a graph with 15 nodes and 22 edges. Node 0 is the original server, and grey
circles are replica nodes. Any node can reach to his nearest replica node within a distance
restrict of QoS ≤ 19. Thick paths show the updating distributing tree rooted by 0, with an
updating cost of 5+10+10+3 = 28.

The replicating cost of is calculated by the following equation:

 (1)

where is a relative weight. Let be the update rate of data, and
are respectively represented by the follows:

 =
Rv

vs)((2)

 =
Tupu

upud
))(,(

))(,((3)

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 235

In equation (3), denotes an update distribution tree [13] rooted by , and token
(,) means that and its parent node are a pair of successive nodes in
the tree .

4 Three-Phase Placement Algorithm

As discussed above, most of existing algorithms are centralized solutions. The lack of
scalability and the rather high computation complexity make them incapable to solve
a large-scale QARP problem. In this section, a novel QoS-aware replica placement
algorithm CPI is introduced. Namely, the algorithm consists of three phases, illus-
trated by the pseudo-code in Figure 2.

Input: G = (V, E); QoS; s
Output: Policy P; Update distributing tree T
1 Begin

//Phrase 1: Node grouping
2 Find 3 pharoses with Pharos Electing Policy;//Sec. 4.2
3 Group all nodes into N Clusters V1,V2,…,VN; //Sec. 4.1

//Phrase 2: Find local replica placement policy
4 For each Cluster Vi
5 Find local replica policy Pi; //Sec. 4.3
6 Construct local update tree Ti; //Sec. 4.4
7 End for;

//Phrase 3: Integration of all local policies
8 P = P1 P2 … PN;
9 Construct T from T1,T2,…,TN;//Sec. 4.4
10 End

Fig. 2. The pseudo-code of algorithm CPI: Clustering, Placing and Integrating

4.1 Pharos-Based Clustering Algorithm

To divide all nodes into different clusters, the principle to be followed is that:

 If two nodes are close to each other, they should be in the same cluster;
 If two nodes are far away from each other, they should be in different clusters.

Therefore a technique is urgently needed to distinguish whether two nodes are
close to or far away from each other. The idea is inspired by GPS [14]: the Global
Positioning System. A typical GPS receiver can easily calculate its 3-D coordinate
position using the distances to four or more GPS satellites. In our algorithm, since the
graph G is in a 2-D coordinate system, it is easily to understand that 3 “satellites”,
here we called them pharoses2, are enough to position a node.

The basic idea of the pharos-based clustering algorithm is to find out which nodes
are close to each other, and then classify them into one cluster. As an simple example
illustrated by Figure 3.

2 Pharos is a peninsula in the Mediterranean Sea at Alexandria, Egypt. It is the site of an ancient

lighthouse. Ancient sailors used it to estimate their positions on the sea.

236 W. Fu et al.

Fig. 3. With the help of 3 pharoses A, B and C, it can be found out that node u is close to v,
while x and y are far away from u or v. Thus, four nodes are clustered into two clusters, as the
dashed circles shows.

Another important issue is how many clusters should be generated. Let denote
the number of clusters. The choice of is a tradeoff between local replica placement
cost and integrating cost. Generally, we decide by controlling each cluster’s size to
be medium-sale. Therefore, can be calculated by the following expression:

 = kV /|| (4)
Where k is an integer, equal to the scale we want each cluster to be.

The clustering algorithm is illustrated by the pseudo-code in Figure 4.

Input: ; Pharoses set{p1, p2, p3}; # of cluster:

Output: Subsets
1. Begin

//Initialize subsets
2. For each node u, let pha(u)=d(u,p1)2+d(u,p2) 2+d(u,p3) 2;
3. Sorting all pha(u), then divide all nodes into N

subsets according to their pha values;
//Clustering processing

4. For each node u, do loops:

5. For each subset , do loops:

6. Calculate average distances from to pharoses:

7. jd =
Viv

j Vipvd /),(, j= 1, 2, 3;

8. diff(u)=(d(u,p1)- 1d)2+(d(u,p2)- 2d)2+(d(u,p3)- 3d)2

9. End of For each subset

10. Move n to the which gets the minimal diff(u);
11. End of For each node
12. End

Fig. 4. The pseudo-code of Pharos-based Clustering Algorithm

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 237

Finally, un-intersect subsets are generated. They meet the
following conditions:

=

i, j {1,2,…, }, =

4.2 Pharos Determination Policy

In a 2-D coordinate system, 3 different reference points would be enough for position-
ing an unknown u. This can be easily confirmed by the left part of Figure 5.

Fig. 5. Left: Let d1, d2 and d3 denote the distances from u to three reference points A, B and C.
Regard A as the centre, d1 as the radius, draws a circle Circle(A, d1). Similarly draw Circle(B,
d2) and Circle(C, d3). Three circles can only intersect at one single point. Figure 5 Right: If
three reference points are on a straight line, the position of u cannot be determinate, because it
still has two alternatives.

Feasible pharoses should avoid being on the same line. Furthermore, geometrical
theorem reveals that far-away reference points can improve positioning accuracy.
Here introduce an elaborate method to meet these two requirements. Firstly, find out
the diameter of , denoted as . Suppose two end nodes connecting the diameter are

 and . Secondly, find out the set of nodes whose distances to are larger than
2/ , denoted as Set1. Similarly, find out another set of nodes whose distances to
are larger than 2/ , denoted as Set2. Finally, let p3 be the node which makes the
maximum sum: = + , Set1 Set2. Then { } are the
selected pharoses. Since + > = = , it is
surely that and are not on a straight line. Meanwhile, these three nodes are
as far away as possible from each other.

4.3 Local Replica Placing Process

After Clustering phase, a large-scale problem is divided into several medium-scale
problems. It is noticeable that these problems are completely independent from each

238 W. Fu et al.

other. One cluster’s result has none dependence with another’s. Obviously,
distributed and parallel Placing phrase can provide more scalability and speedup the
whole algorithm. In each cluster , any existing algorithm mentioned in section 2 can
be applied to obtain local replica policy with much smaller computation and
memory overhead.

In order to minimize update cost, a shortest path tree is adopted to act as the update
distributing tree . Every establishes its local tree according to the location of
source node : In cluster which contains the original node , take as the root of

. In other clusters, a root should be found through the following rule. Let denote
the root of i. Then it can be picked out by calculate the distance between any node in

and original tree : Let denote the smallest one:

=)}},({min{min vud
TsvTiu

 (7)

Then = . And will be recorded as the attaching point, see Section 4.4.

4.4 Partition Integrating Mechanism

In order to obtain the global policy, every cluster submits its local policy to the
original node. It is obviously that the finial replica policy is = .

The last thing remaining is the integrating of update distributing trees. During the
Integrating phase, every tree i is submitted to . Then they are attached to one by
one, as Figure 6 illustrated. The attaching points also come from (7). This only needs
constant time complexity.

Fig. 6. An example of tree integration during Integrating phase. Black dots represent for replica
nodes, while whit dots for non-replica nodes. Four local update distributing trees are grafted to
the original tree, thus obtaining the global update distributing tree T.

5 Theoretical Analysis

The philosophical foundation of CPI algorithm is deduction and induction. At the
beginning, a large-scale problem is deducted to several small-scale problems with the

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 239

same essence. On finishing these small problems, all partial results are inducted to
generate a complete result. Moreover, CPI is provided with parallel and distributed
features in the second phase.

Recall the pseudo-code in Figure 2, we will analyze the time complexity of CPI
line by line.

(1) Line 2: the pharos electing algorithm is performed at the time complexity O(| |2).
(2) Line 3: the pharos-based clustering process is executed. It contains a sorting

process, which has O(| |*log| |) time complexity [15]. About the nested For
loops in Figure 4, there are | | nodes and N clusters, so the complexity is
O(N*| |). Thus the total time complexity of line 3 is O(| |*log| | + N*| |).

(3) In the For loops from line 4 to line 7, suppose the time complexity of the local
replica placement algorithm is typically O((| |/N)3), since constructing update
distributing tree only needs a complexity of O((| |/N)2) [13], so the total time
complexity is O(N*(| |/N)3)=O(| |3/N2).

(4) Line 8: constant time.
(5) Line 9: according to equation (6), since the average sizes of and are all n/N,

so the time complexity is O(| |2/N2).

Therefore, the total time complexity is O(| |3/N2 + | |2), depending on the choice
of N. For example, in our experiments, let N=| |/k, k is a constant. Then the final
time complexity is O(k2*| | + | |2) = O(| |2). It can be concluded that the
computation cost is much cheaper than all existing ones.

6 Experiments and Evaluation

With Java language, we developed a simulating test-bed for replica algorithm validat-
ing. It consists of 5 parts, listed as follows:

• A famous network topology generator BRITE [16] was imbedded to produce net-
works graphs. Also corresponding functions were designed to read in BRITE out-
put files and generate all-pairs shortest path matrix.

• A Java GUI graphic tool was developed to show how nodes and replicas are dis-
tributed in a square plane.

• A class was implemented to generate a shortest path tree and obtain update cost.
• A library included many existing replica placement algorithms, as well as CPI.
• Other utilities and assistant classes.

The test-bed is running at a personal computer with Intel Pentium M Process
1.7GHz, 1GB memory, 100GB disk and Windows XP OS. For justice, only “pure”
costs of algorithms are recorded. For one graph size, BRITE generated 100 graphs to
test effects of one algorithm. The result of this algorithm in our record is the average
of 100 times of experiments. We chose the Waxman model [16] to generate network
topology. The process can be outlined as follows: firstly N nodes are randomly placed
into a square plane ordered by HS and LS. Then link is created between each pair of

240 W. Fu et al.

nodes with the probability of =)/(),(Dvude , where is the
Euclidean distance between and , is the diameter of the graph, and , are both
Waxman parameters. Larger will generate more edges, and higher will result
more long edge. Finally a bandwidth is set to every edge. In our experiments, HS =
1000, LS = 1000, = 0.15, = 0.2. Additionally, the label of original node was
generated randomly. Without loss of generality, 1 and 0.5.

6.1 The Choice of Parameter

As we discussed in section 4.1, number of clusters influences the clustering
algorithm so much. In this section, different sizes of are tested to find the proper
rang of . Let varies from 100 to 800. At the same time, different sizes of are
tested. Since update cost is consistent with the time cost, we only recorded the time
expended. Table 1 shows the influence of .

Table 1. Time complexity of CPI under different parameter (unit: second)

100 200 400 800 1600 3200
 =100 2.47 2.86 23.16 63.03 241.37 328.73
 =200 2.14 23.86 24.67 41.93 125.42 245.32
 =400 3.03 3.86 11.12 34.17 63.25 183.25
 =800 3.39 5.97 33.67 242.27 445.13 456.31

When is large, the time cost is mainly decided by the local replica algorithm. On
the contrary, it is mainly generated from the clustering algorithm. From table 1 we
can conclude that =400 is a proper value.

6.2 Time Complexity and Space

Four different algorithms were operated on the test-bed, with the number of nodes
growing from 100 to 3200. The QoS is fixed to 0.2* , where is the diameter of
graph . 0-Greedy-Insert and 0-Greedy-Delete are introduced in Tang and Xu’s
paper [9]. GC stands for Greedy-Cover algorithm [10]. In CPI algorithm, 0-Greedy-
Insert is adopted to solve cluster replica placing problem. The number of clusters is
set to 400, as discussed in Section 6.1. If < , no clustering operation occurs.
And the CPI algorithm will be degraded to be a normal 0-Greedy-Insert. Note: if
running time exceeds 2 hours (7200 seconds), it will be marked as the symbol E/T,
which means OutOfTime exception. Comparatively, another symbol E/M represents
for the OutOfMemory exception.

Table 2 shows how the number of nodes influenced the time complexity of
traditional algorithms. As the node number doubled, the time costs of 0-Greedy-Insert,
0-Greedy-Delete and GC increased by an order of magnitude. GC got better results
than 0-Greedy-Insert or 0-Greedy-Delete because it didn’t have to repeat calculating
the update cost during placing. The construction of update distributing tree can be
finished at the very end of the algorithm.

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 241

Only CPI can handle a placement problem with over 3000 nodes. When is less
than 400, time cost of CPI is almost the same with a local algorithm. In this case, CPI
is degenerated to a 0-Greedy-Insert algorithm. When is larger than 400, the cost of
CPI keeps stable at several tens of seconds, which is approximate the cost of 0-
Greedy-Insert handling 400 nodes. Even when = 3200, the cost does not exceed
500 seconds. This result accords with the theoretical analysis in section 5.

Table 2. Time & space costs of different algorithms (unit: second)

of Nodes 0-Greedy-Insert 0-Greedy-Delete GC CPI
100 0.19 5.78 0.11 0.35
200 2.78 151.45 0.38 3.66
400 35.78 5285 3.16 37.85
800 542.27 E/T 29.50 42.72
1600 E/T E/T 259.91 192.65
3200 E/M E/M E/M 472.23

6.3 The Effect of Replica Placement

In this section we will compare the effect of different algorithms. Metrics includes the
number of replicas and the update costs, and thus the replica cost calculated by the
expression (1).

Suppose that CPI still use 0-Greedy-Insert as the local cluster replica placement so-
lution. From figure 7 we know that CPI needs more replicas than 0-Greedy-Insert to
satisfy all clients’ QoS requirements. However, the replica number of CPI is much

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

of nodes

#

o
f

R
e
p
l
i
c
a
s

CPI GC 0-greedy-insert 0-greedy-delete

Fig. 7. With the growth of nodes, increments of replica numbers of different algorithms remain
stable. The coordinates 1-6 at x- axis stand for 100 nodes, 200 nodes, 400 nodes, 800 nodes,
1600 nodes and 3200 nodes respectively.

242 W. Fu et al.

less than that of GC. This is because GC only considered the nodes nearby, while CPI
will check the whole node sets to find proper clusters. The increment of storage cost
is also acceptable. From the experiment we also found that update cost is closely
relative with the number of replicas. It has the similar curves as in Figure 7. For the
limitations of space, we omitted to describe it.

7 Conclusion

By testing various existing QoS-aware replica placement algorithms on our self-
designed test-bed, we found out that they all lacks of scalability and can only handle
small-scale and medium-scale QARP problems. In this paper, we propose a novel
three-phase algorithm CPI to overcome the embarrassment. The ideal of CPI is to
divide a large-scale problem into several medium-scale partial problems with an ef-
fective clustering algorithm. After each partial problem is solved, the integration of all
partial results will generate the complete result.

There are several original ideas in the algorithm, including the pharos-based clus-
tering methods and the integrating mechanism of multiple update distributing trees. In
order to investigate and test different algorithms, we designed and implemented a
general-purposed test-bed by ourselves. Elaborate plans and sufficient experiments
make our work solid and convincible.

References

1. Patiño-Martinez, M., Jiménez-Peris, R., et al.: MIDDLE-R: Consistent database replica-
tion at the middleware level. ACM Transactions on Computer Systems (TOCS) 23(4),
375–423 (2005)

2. Zhang, J., Honeyman, P.: Hierarchical Replication Control in a Global File System. In:
Seventh IEEE International Symposium on Cluster Computing and the Grid, CCGRID
2007, pp. 155–162 (2007)

3. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution. In:
24th Annual Joint Conference of the IEEE Computer and Communications Societies,
vol. 4, pp. 2235–2245 (2005)

4. Krishnamurthy, B., Wills, C., Zhang, Y.: On the use and performance of content distribu-
tion networks. In: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Meas-
urement table of contents, pp. 169–182

5. Malkhi, D., Novik, L., Purcell, C.: P2P replica synchronization with vector sets. ACM SI-
GOPS Operating Systems Review archive 41(2), 68–74 (2007)

6. Ann Chervenak, I.F., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of Large Scientic Datasets.
Journal of Network and Computer Applications 23, 187–200 (2001)

7. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the Placement of Web Server Replicas.
In: Proc. IEEE INFOCOM 2001, pp. 1587–1596 (2001)

8. Cidon, I., Kutten, S., Soffer, R.: Optimal Allocation of Electronic Content. In: Proc. IEEE
INFOCOM 2001, April 2001, pp. 1773–1780 (2001)

9. Tang, X., Xu, J.: Qos-aware replica placement for content distribution. IEEE Transactions
on Parallel and Distributed Systems 10, 921–932 (2005)

 CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem 243

10. Hsiangkai Wang, P.L., Wu, J.-J.: A QoS-Aware Heuristic Algorithm for Replica Place-
ment. In: Grid Computing Conference 2006 (2006)

11. Won, J., Jeon, I.G., Nahrstedt, K.: QoS-aware Object Replication in Overlay Networks. In:
IPTPS 2005 (2005)

12. Fu, W., Xiao, N., Lu, X.: QoS-Guaranteed Ring Replication Management with Strong
Consistency. In: ApWeb/WAIM Workshops, Huangshan China (2007)

13. Tao, W., Wei-Sheng, L.: A Fast Low-Cost Shortest Path Tree Algorithm. Journal of Soft-
ware (China) 15(5), 660–665

14. http://en.wikipedia.org/wiki/Global_Positioning_System (2008)
15. Schnorr, C.P., Shamir, A.: An optimal sorting algorithm for mesh connected computers.

In: Proceedings of the eighteenth annual ACM symposium on Theory of computing table
of contents, pp. 255–263 (1986)

16. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: an approach to universal topology
generation. In: Ninth International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pp. 346–353 (2001)

Online Balancing Two Independent Criteria

Savio S.H. Tse

Department of Computer Engineering,
Bilkent University,

Ankara 06800, Turkey
sshtse@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/∼sshtse

Abstract. We study the online bicriteria load balancing problem in
this paper. We choose a system of distributed homogeneous file servers
located in a cluster as the scenario and propose two online approximate
algorithms for balancing their loads and required storage spaces.

We first revisit the best existing solution for document placement, and
rewrite it in our first algorithm by imposing some flexibilities. The sec-
ond algorithm bounds the load and storage space of each server by less
than three times of their trivial lower bounds, respectively; and more im-
portantly, for each server, the value of at least one parameter is far from
its worst case. The time complexities for both algorithm are O(log M).

Keywords: Approximate, Distributed, Online algorithm; Load balanc-
ing, Scheduling; Distributed file server; Document placement.

1 Introduction

Load balancing is a technique to achieve better coordination between entities
such that the load burdened on each entity should not differ too much from
that on others. In other words, load balancing is to prevent overwhelming any
small subset of entities. The problem becomes NP-hard if we aim at evenly
distributing the workload to all entities which provide the same services, or
minimizing the difference between them. Therefore, approximate solutions are
expected. The load on an entity can be its access rate, the number of execution
of some important steps for each access, the number of bits transferred for each
request, etc.. There are some different types of approximate solutions for load
balancing. A common one is to bound the load of each entity by a limit [4,12,14].
Its variant is to set the limit according to the capacity of each individual entity
[3]. In this paper, we choose the first type. In reality, there are often more than
one parameter needed to be balanced. For example, execution time and memory
utilization are two common parameters requiring simultaneous balancing. In
this paper, we address the online bicriteria load balancing problem, and the two
criteria are independent. We consider a system of distributed homogeneous file
servers in a cluster, and the parameters to be balanced are the load and storage
space. Hereafter, the single word “load” is referred to a parameter while “load

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 244–254, 2008.
c© IFIP International Federation for Information Processing 2008

Online Balancing Two Independent Criteria 245

balancing” is referred to the classical problem. The load of a document stored
in the file server system can be one of the quantities discussed above, and the
storage space can be its physical size, or the memory space needed to process
the document. The system designer can also take any other reasonable choices.

1.1 Related Works

With applying a limit to a set of homogeneous servers for bounding their loads,
the single criterion load balancing problem is basically the NP-hard multipro-
cessor scheduling problem, which is reduced from the classical problem PARTI-
TION [8]. Many heuristics have been proposed for solving it. The latest result

was given by Fleischer and Wahl [7], which is an online (1+
√

1+ln 2
2)-competitive

algorithm. (An online algorithm is c-competitive if the parameter needed to be
minimized is bounded by c times its optimal values.) It is asymptotically the
best known upper bound result. The latest lower bound result is by Rudin et al.
[13], which shows that no c-competitive algorithm exists if c < 1.88.

For bicriteria load balancing, as there is one more constraint to tackle, higher
upper bounds for both load and storage space are expected. In 2001, Chen et al.
gave two offline algorithms, and one of them balances both the load and storage
space [4]. It bounds the load by 4L using at most 4S storage space, where L and
S (defined in Section 2) are commonly used as the trivial worst case lower bounds
for load and storage space, respectively. In 2005, we proposed some algorithms
[14], including an O(log M)-time online algorithm which bounds the load and
storage space of each server by klL and ksS, respectively, where kl > 2, ks > 2,
and 1

kl−1 + 1
ks−1 ≤ 1. In 2006, Bilǒ et al. gave a (2M−k

M−k+1 , M+k−1
k)-competitive

algorithm [2], where k can be any integer from 1 to M . It bounds the load and
storage space by 2M−k

M−k+1L and M+k−1
k S, respectively. It slightly improves the

result for the online algorithm in [14], especially for small values of M . This is
the best known result which can be generalized for balancing multi-parameters.
Note that kl < 3 ⇔ ks > 3, and 2M−k

M−k+1 < 3 − 4
M+1 ⇔ M+k−1

k > 3 − 4
M+1 .

Therefore, asymptotically (M → ∞), there is no result which can bound the
load by hlL, and the storage space by hsS, where hl and hs are any positive real
numbers less than three.

1.2 Our Contribution

By modifying a technique in [14], we improve slightly on their last result in our
first algorithm. This result is essentially the same as, but more flexible than, the
upper bound result in [2]. The bounds of the load and storage space in our first
result are tlL and tsS, respectively, where tl, ts > 1 are real numbers satisfying
both 1

tl−1 + 1
ts−1 ≤ 1 + 2

M−1 and [M−1
tl−1 , M−1

ts−1 �∈ I+] =⇒ [�M−1
tl−1 � + �M−1

ts−1 � < M].
Comparing with the algorithm in [2], practically, the advantage of our algorithm
is the flexibility in choosing suitable servers. An example in Section 3.2 shows the
possibility of finding a server which can allow us to gain a lot in storage space

246 S.S.H. Tse

at the expense of little sacrifice on load. However, we improve the searching
algorithm only for bicriteria load balancing, which is a special case for multi-
criteria load balancing tackled in [2].

We present our result in two equations, in which we can easily see the tradeoff
between the upper bounds of load and storage space, and their symmetry and
asymptotic behaviour (as M → ∞). This representation has more theoretical
benefit.

The last algorithm bounds the load and storage space of each server by (3 −
2
M)L and (3− 2

M)S, respectively, with a feature that dictates if the load is higher
than (5

2 − 3
2M)L, then the storage space is less than (5

2 − 3
2M)S (and vice versa).

In other words, at most one of load and storage space in each server can get
close to their upper bounds. It is another style of load balancing, which does not
exist in the literature [4,12,14], as far as we know.

2 Definitions and Models

Each document has two fundamental independent attributes, namely load and
size. For the convenience of discussion, assume the load of a document to be
the product of its access rate and its size plus the number of execution of some
specific I/O steps. There are M servers and N documents. The value of N
changes accordingly upon each placement and deletion. If server insertion is
considered, The value of M will also increase by one on each server insertion.
For every i ∈ {1, . . . , N}, the ith document has positive load li and size si. For
convenience, assume the indices of documents will automatically shift up upon
each document deletion. The load and storage space of a server is the summation
of loads and sizes of all documents stored, respectively. For all j ∈ {1, . . . , M},
the load of the jth server is denoted as Lj and the storage space as Sj . We do
not assume any fixed limit on their values.

Let L and S be the average load and storage space of all servers in the sys-
tem. Therefore, L =

∑
i∈{1,...,N} li

M , and S =
∑

i∈{1,...,N} si

M . As S is highly related
to the upper bound of the cost of document recollocation, in order to keep
its value reasonably small, M is assumed to be large enough although our al-
gorithms also work for small M . Let L be max(maxi∈{1,...,N} li, L) and S be
max(maxi∈{1,...,N} si, S). Note that L, S, L and S only depend on the exist-
ing documents stored and the number of servers. These algorithm-independent
quantities are used in the descriptions of the upper bounds of Lj and Sj , for all
j ∈ {1, . . . , M}, respectively, for all algorithms in this paper. Clearly, L and S
are trivial lower bounds on the highest load and storage space of each server,
respectively. For completeness, assume L = S = 0 and L = S = 0 when there is
no document in the server system. We define the capacity index Cj for the jth
server to be Lj

L + Sj

S , for each j ∈ {1, . . . , M}. It is a metric that measures the
combined effect of the loads and storage spaces of the servers, and the trivial
lower bound of its worst case is obviously two. It is basically the sum of the
normalized load and normalized storage space, and therefore, less affected by
absolute values of two individual parameters. Obviously,

∑
j∈{1,...,M} Cj ≤ 2M .

Online Balancing Two Independent Criteria 247

The purpose of the capacity index is to enhance further balancing among servers.
For example, if Lj ≤ 3L, Sj ≤ 3S, and Cj < 4, for all j ∈ {1, . . . , M}, one can
conclude that although the worst case of the load and storage space can be three
times of L and S, respectively, only of them can be close to its worst case.

Let tl, ts ∈ (1, M] be two real numbers satisfying both

1
tl−1 + 1

ts−1 ≤ 1 + 2
M−1 , and (1)

[M−1
tl−1 , M−1

ts−1 �∈ I+] =⇒ [�M−1
tl−1 � + �M−1

ts−1 � < M]. (2)

These two values are used throughout the paper to reflect the tradeoff between
the bounds of loads and storage spaces for all servers. The relationship between
tl and ts for all feasible pairs of values and the intuition of these two equations
will be discussed later in Section 3.1. Fact 1 below will be used in some proofs
in this paper.

Fact 1. Suppose x1, x2 ∈ I+ such that x1 < M−1
tl−1 and x2 < M−1

ts−1 . Then, x1 +
x2 < M .

Proof. If both M−1
tl−1 and M−1

ts−1 are integers, then (let) y = x1 +x2 ≤ (M−1
tl−1 −1)+

(M−1
ts−1 − 1) < M . If the former one (say) is an integer, then y ≤ (M−1

tl−1 − 1) +
�M−1

ts−1 � = (M−1
tl−1 − 1) + (�M−1

ts−1 � − 1) ≤ M + 1 − 2 < M . If both of them are not
integers, then y ≤ �M−1

tl−1 � + �M−1
ts−1 � < M .

We apply a tree structure like B+-tree [11] which is widely employed for storing
the information of the servers in this paper. We call it B0-tree, as [14]. A B0-tree
stores a set {(l, s)|l, s ∈ R+}. In each order pair (l, s), l and s are referred to load
and storage space of a server, respectively. We assume the elements stored in a
B0-tree are unique. (Precisely, the set can be organized as (B1, B2, . . . , BM ′),
where Bj = (l, s) for some l, s ∈ R+, ∀j ∈ {1, . . . , M ′}, M ′ ≤ M .) Like B+-tree,
data (keys) are stored in leaves, and all leaves are located at the bottom level.
Except for the root, each internal node has K

2 to K children. The root has 1 to
K children. Like B+-tree, the data in the bottom level are sorted according to
s-values, and unlike B+-tree, a parent node stores a copy of one of its children
with smallest l-value. If there are two children having the smallest l-value, choose
the one with smaller s-value. Hence, the root contains the copy of the data with
minimum l-value. The normal operations are similar to those of B+-tree. To keep
the time for maintenance in O(log t), where t is the number of data stored in the
tree, there is an auxiliary B+-tree for storing the s-values only. For simplicity,
we skip the discussion of those necessary but trivial steps for operations, like
lookup, insertion and deletion on the data structure.

Let SEEK be the algorithm for performing searching and updating on a B0-
tree. This algorithm will be used in the following sections. For any input (X, Y),
where X, Y ∈ R+, SEEK can search an element (l, s) in a B0-tree and perform
updating within O(log t) time, where s is the smallest possible value such that
l ≤ X . If there are two l’s with smallest s-value, choose the smaller one. In the
case that l > X for each (l, s) in the tree, SEEK will output false. The next step

248 S.S.H. Tse

is to check s ≤ Y . If true, output (l, s); otherwise, output false. That means,
if output is (l, s), then l ≤ X and s ≤ Y . In other words, SEEK is used for
searching a server with load and storage space inclusively bounded by certain
values, respectively, and storage space is as less as possible.

By the similar construction, we can easily obtain an algorithm SEEK∗ such
that if output is (l, s), then l < X and s < Y . In other words, SEEK∗ is used for
searching a server with load and storage space exclusively bounded by certain
values, respectively, and storage space is as less as possible.

For conciseness, all B0-trees used in this paper will be automatically updated
and maintained, unless specified.

Let TA be {(Lj , Sj)|j ∈ {1, . . . , M}} which is stored in a B0-tree. That is,
it stores the loads and storage spaces of all servers. The reallocation cost of a
document is defined as its size. In particular, if all documents in the ith server
are reallocated, the cost will be Si.

Lastly, our results are for synchronous networks; that is, before the completion
of updating the data structures and reallocating the necessary documents for the
previous operation, the next operation will not be performed.

3 The First Result

We consider document placement into a distributed file server. Our aim is to
bound the loads and storage spaces of all servers by tlL and tsS, respectively.
With smaller values of tl and ts, the upper bounds are tightened and imply
better balancing on load and storage space, respectively. The bounds are loosened
slowly with M according to Equations (1) and (2). This matches with the fact
that it is more difficult to coordinate more resources. However, such difficulty is
not unlimited, as the bounds asymptotically tend to the result in [14]. We now
apply tighter equations for tl and ts and analyse on the upper bounds.

Algorithm FIRST:
1. Upon the arrival of a document d with load l and size s
1.1 Perform SEEK on TA with input (M

M−1 (tl − 1)L, M
M−1 (ts − 1)S)

and get output (Lj , Sj);
1.2 Place d into the jth server;
1.3 Update L and S;

Theorem 1. The new document can be placed into a server, and after place-
ment, the load and storage space of the server are no more than tlL and tsS,
respectively.

Proof. If the server system is initially empty, the algorithm can place the docu-
ment and give the bounds L and S, respectively.

Assume there are some documents in the server system. Before placing the
document d, there are less than M−1

tl−1 servers with load more than M
M−1 (tl −1)L,

Online Balancing Two Independent Criteria 249

otherwise, the total load will exceed ML. Similarly, there are less than M−1
ts−1

servers with storage space more than M
M−1 (ts − 1)S. By Fact 1, the number of

servers exceeding the load bound or the storage space bound is less than M .
Hence, there exists one server with load and storage space at most M

M−1 (tl −1)L
and M

M−1 (ts − 1)S, respectively, and SEEK will output such a server as the jth
server in Step 1.1.

Suppose that the average load is L
′
after Step 1.2. Then, L

′
= L+ l

M . Lj is then
at most M

M−1 (tl−1)L+l = M
M−1 (tl−1)(L

′− l
M)+l = M

M−1 (tl−1)L
′
+(1− tl−1

M−1)l.

The result for load follows as L
′
and l are no more than the final L. By using

similar arguments, the result for storage space follows.

3.1 The Feasible Region for Values of tl and ts

We discuss the feasible region for values of tl and ts satisfying Equations (1)
and (2). The purpose is to provide more information to the system designer to
choose values for tl and ts for different situations.

For the case that 1
tl−1 + 1

ts−1 ≤ 1 + 1
M−1 , Equations (1) and (2) are always

true. The region for this case is labeled as A in Figure 1.
For the case that 1

tl−1 + 1
ts−1 = 1 + 2

M−1 , if M−1
tl−1 and M−1

ts−1 are non-integers,
then �M−1

tl−1 � + �M−1
ts−1 � = M , which implies that Equation (2) is false. Then,

we cannot use Fact 1 to guarantee the existence of a server for placement. In
order to keep Equation (2) true, one of M−1

tl−1 and M−1
ts−1 must be an integer.

As M−1
tl−1 + M−1

ts−1 = M + 1, both M−1
tl−1 and M−1

ts−1 are integers between 1 and
M , inclusively. In other words, there are M feasible pairs of tl and ts on the
curve 1

tl−1 + 1
ts−1 = 1 + 2

M−1 , satisfying Equation (2). Let k = M−1
ts−1 . Then,

M−1
tl−1 = M − k + 1. Rewriting the result in Theorem 1 in terms of M and k,
our load bound tlL = 2M−k

M−k+1L, and storage space bound tsS = M+k−1
k S. This

matches exactly with the (2M−k
M−k+1 , M+k−1

k)-competitive algorithm in [2]. In other
words, if we equalize the inequality in Equation (1), the algorithm FIRST has
identical upper bounds as in [2]. As k is ranged from 1 to M , there are M feasible
points for (tl, ts) on the curve 1

tl−1 + 1
ts−1 = 1 + 2

M−1 .
Claims 3.1 and 3.1 below investigate the structure for tl and ts satisfying

1 + 1
M−1 < 1

tl−1 + 1
ts−1 < 1 + 2

M−1 .

Claim. For all tl, ts ∈ R+ satisfying 1 + 1
M−1 < 1

tl−1 + 1
ts−1 < 1 + 2

M−1 ,
Equation (2) is true if and only if there exists a k ∈ {1, 2, . . . , M} such that
ts ≥ M+k−1

k and tl ≥ 2M−k
M−k+1 .

Proof. Suppose Equation (2) is true. If one of M−1
tl−1 and M−1

ts−1 is an integer,
without loss of generality, assume that M−1

ts−1 is an integer, and let k = M−1
ts−1 . Then

ts = M−1
k + 1. As M−1

tl−1 + M−1
ts−1 < M + 1, we have M−1

tl−1 < M + 1 − k, and result
follows. If both M−1

tl−1 and M−1
ts−1 are non-integers, then �M−1

tl−1 �+ �M−1
ts−1 � < M . Let

k = �M−1
ts−1 �. Then M−1

tl−1 − 1 < �M−1
tl−1 � < M − k, and result follows.

250 S.S.H. Tse

Suppose Equation (2) is false. Then, both M−1
tl−1 and M−1

ts−1 are non-integers and
�M−1

tl−1 � + �M−1
ts−1 � = M . For all k ∈ {1, 2, . . . , M}, we have ts ≥ M+k−1

k ⇔ k ≥
M−1
ts−1 > �M−1

ts−1 � ⇔ M−k < �M−1
tl−1 � ⇔ M−k+1 ≤ �M−1

tl−1 � < M−1
tl−1 ⇔ tl < 2M−k

M−k+1 .
Result follows.

Claim. For all k ∈ {1, 2, . . . , M −1}, the point (2M−k−1
M−k , M+k−1

k) is on the curve
1

tl−1 + 1
ts−1 = 1 + 1

M−1 .

st

lt

+1

t −1l

1

t −1s

2

M−1
= 1 +

+1

t −1l

1

t −1s

1

M−1
= 1 +

M−k+1

2M−k M+k−1

k
(,)

(,)M+k

k+1M−k

2M−k−1

(,)M+k+1

k+2M−k−1

2M−k−2

x

z

y

v

u
A

Feasible region

Infeasible region

Fig. 1. Feasible Region for values of tl and ts

We skip the trivial proof for Claim 3.1. Recalling the M feasible points is on the
curve 1

tl−1 + 1
ts−1 = 1 + 2

M−1 , and together with Claims 3.1 and 3.1, the whole
feasible region is now clear and is shown in Figure 1. In the figure, the feasible
and infeasible regions are separated by the solid zigzag (-horizontal-vertical-)
line which is bounded tightly by two dotted curves 1

tl−1 + 1
ts−1 = 1 + 1

M−1 and
1

tl−1 + 1
ts−1 = 1 + 2

M−1 , and the vertices of the zigzag line touch the curves
alternatively. The feasible region is divided into two types of sub-regions. The
largest sub-region is the open-ended one bounded below by the upper curve. We
label it as A. The sub-regions of the second type, which are disjoint, spread over
the gap between two curves. The ones labeled as x, y and z are examples. The
values inside the sub-regions of this type satisfy Equation (2). In contrast, the
points between two adjacent sub-regions turn Equation (2) false. Examples are
u and v in the figure. It is easily seen that the M feasible points in the lower
curve are the best in the whole feasible region. Precisely, for every other point in
the feasible region, there is a better choice from these M feasible points. Since
the two curves will narrow and become one as M → ∞, the sub-regions of the

Online Balancing Two Independent Criteria 251

second type diminish with M , and the M best points will coincide with the
upper curve.

From the feasible region, we have some suggestions to the system designer.
First if M is unchanged, we can use one of the M best points on the lower curve.
After the system designer chooses a point, he can proceed to check if both
Equations (1) and (2) remain true. If yes, he can apply his values. Otherwise,
use binary search to find a point out of the M best points, which is nearest to his
original choice. The time needed is O(log M). Binary search can be used because
of the convex nature of the feasible region.

If M can be increased by server insertion, the previous M points may become
infeasible as the lower curve shifts upwards. Even when M decreases by server
deletion, some points may fall into infeasible region when the two curves shifts
down. One can easily see from the figure that there are no two consecutive points
staying in the feasible region as M decreases by 1. In order not to put burden on
the system maintenance, we suggest to use the points, satisfying 1

tl−1 + 1
ts−1 ≤ 1,

in the region A, if M can change. These points, used in [14], are independent of
M , and is suitable for a system in which the number of servers is changing.

3.2 Remarks on Algorithm FIRST

Comparing Algorithm FIRST with the result in [2], our algorithm has two advan-
tages. First, our upper bounds can spread through the continuous feasible region,
not only the M best points. The second advantage comes from the difference of
searching algorithms. The algorithm in [2] ignores the servers of the first M − k
highest load, k ∈ {1, . . . , M}. In the case that the loads of some of these ignored
servers are not very high but the storage spaces of them are very low, our algo-
rithm is beneficial. Take for an example. For all j ∈ {1, . . . , M−k−1}, Lj = L+δ

and Sj = MS−δ
M−1 ; LM−k = L and SM−k = δ; and for all j ∈ {M − k + 1, . . . , M},

Lj = L− M−k−1
k δ and Sj = MS−δ

M−1 , where δ is extremely small. Then, one of the
last k servers will be chosen by the algorithm in [2], but algorithm SEEK will
choose the (M − k)th one. The former have little advantage on load but pays
much higher price on storage space. Nevertheless, the searching algorithm in [2]
can be easily generalized for balancing more than two criteria. Although SEEK
is better, it is designed for two criteria only. Further research can be done on
finding better searching algorithms for multi-criteria load balancing problem.

4 The Second Result

In this section, we study the capacity index which measures the integrated effect
of load and storage space on each server. Our aim is to bound the load, the
storage space and the capacity index of each server by (3− 2

M)L, (3− 2
M)S, and

5 − 3
M , respectively, after each document placement.

Consider the algorithm FIRST. We choose tl = ts = 3 − 4
M+1 for odd M .

For even M , we choose tl = 3 − 2
M , and ts = 3 − 6

M+2 , or vice versa. Then, a

252 S.S.H. Tse

trivial upper bound 6− 8
M+1 on the capacity index can be obtained immediately.

In this section, by using algorithm SECOND, the capacity index is improved to
5− 3

M , at the expense of a slightly higher upper bound(s) for load and/or storage
space, respectively. In other words, if we sacrifice the asymptotically nothing in
the upper bounds of load and storage space, respectively, then we gain much
more in capacity index in return.

Directly from the definition, the capacity index 5 − 3
M implies that for each

server, at most one of the two parameters, load and storage space, can be close
to its upper bound of worst case. For example, if the load in a server gets very
close to (3 − 2

M)L, then its storage space keeps a distance of nearly S from the
upper bound (3− 2

M)S. In other words, by using algorithm SECOND, the worst
cases of load and storage space are shared by more servers. However, by using
algorithm FIRST, the load and storage space can both simultaneously reach
their upper bounds, respectively. Therefore, algorithm SECOND beats FIRST
when tl and ts are chosen close to three.

The improvement in capacity index also gives hope that both parameters could
be very close to 2.5 of their trivial lower bounds simultaneously. If succeed, it
will then an important step towards the asymptotic latest known upper bound
of 1.9201 [7] and the lower bound of 1.88 [13] for balancing a single parameter.

As there always exists a j ∈ {1, . . . , M} such that Lj ≤ 2L, Sj ≤ 2S, and
Cj ≤ 2 (otherwise,

∑
j=1,...,M Cj > 2M), an O(M)-time algorithm can be applied

to search this server in order to obtain a better upper bound on capacity index. For
small M , the average storage space is large, and this trivial approach is a better
choice. However, when M is large, an O(log M)-time algorithm CAPACITY will
be given. Its idea is as follows: Upon the arrival of a new document d, if there is a
server in which load and storage space are bounded by L and 2S, respectively,
Step 1.1 of the algorithm will find it and Step 1.2.1 will place d into it. After
placement, the load, the storage space, and the capacity index are kept under
the mentioned bounded. The details are shown in Theorem 2. Suppose no such
server exists in the system. We aim at a server in which load and storage space are
bounded by 2L and S, respectively. It such a server exists, Step 1.3.1 will find it
out and Step 1.3.2 will place d into it. The correctness proof is based on the ob-
servation that if Step 1.1 fails in searching a server, then Step 1.3.1 will succeed.

The algorithm SECOND is given below, and is followed by Theorem 2.

Algorithm SECOND:
1. Upon the arrival of a document d with load l and size s
1.1 Perform SEEK∗ on TA with input (L, 2S) and get output;
1.2 If output is (Lj , Sj);
1.2.1 Place d into the jth server;
1.3 If output is false
1.3.1 Perform SEEK∗ on TA with input (2L, S)

and get output (Li, Si);
1.3.2 Place d into the ith server;
1.4 Update L and S;

Online Balancing Two Independent Criteria 253

Theorem 2. The new document can be placed into a server, and after place-
ment, the load and storage space of the server are less than (3 − 2

M)L and
(3 − 2

M)S, respectively, and the capacity index less than 5 − 3
M .

Proof. Assume for contradiction that for all j ∈ [1, M], Lj ≥ 2L, Sj ≥ 2S, or
[Lj > L and Sj > S]. Suppose there are M1 servers which loads are at least 2L,
M2 servers which storage spaces are at least 2S, and M3 servers which loads are
more than L, and storage spaces more than S. Obviously, M1+M2+M3 ≥ M . If
M1 = 0, total storage space will exceed MS. Hence M1 �= 0. Similarly, M2 �= 0.
Consider that M3 = 0. Since all servers have positive loads, total load is greater
than 2M1L, which implies M1 < M2. On the other hand, since all servers have
positive storage spaces, total storage space is greater than 2M1S, which implies
M2 < M1. Hence, M3 �= 0. Considering

∑M
j=1[

Lj

L
+ Sj

S
] > 2M1 + 2M2 + 2M3 ≥

2M , which is a contradiction. Therefore, there exists a j ∈ [1, M], such that
Lj < 2L, Sj < 2S, and [Lj ≤ L or Sj ≤ S]. Rewriting it, we have either [Lj ≤ L
and Sj < 2S] or [Sj ≤ S and Lj < 2L]. We assume the former case while the
argument for the latter one is similar.

After placing d into the server, the average load becomes L
′
= L + l

M , the
average storage space becomes S

′
= S + s

M , and the values of L and S become
L′ and S′. Then, Li ≤ L

′ − l
M + l = L

′
+ (1 − 1

M)l ≤ (2 − 1
M)L′. For storage

space, Si < 2(S
′ − s

M) + s = 2S
′
+ (1 − 2

M)s ≤ (3 − 2
M)S′. Hence, Ci < 5 − 3

M .

References

1. Amita, G.C.: Incremental data allocation and reallocation in distributed database
systems. Data warehousing and web engineering, 137–160 (2002)

2. Bilǒ, V., Flammini, M., Moscardelli, L.: Pareto Approximations for the Bicriteria
Scheduling Problem. Journal of Parallel and Distributed Computing 66(3), 393–402
(2006)

3. Brinkmann, A., Salzwedel, K., Scheideler, C.: Compact, Adaptive Placement
Schemes for Non-Uniform Requirements. In: Proceedings of ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 2002), Winnipeg, Manitoba,
Canada (August 2002)

4. Chen, L.C., Choi, H.A.: Approximation Algorithms for Data Distribution with
Load Balancing of Web Servers. In: Proc. of IEEE International Conference on
Cluster Computing, Newport Beach, CA, USA, pp. 274–281 (October 2001)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill, New York (2001)

6. Fisher, M.L., Hochbaum, D.S.: Database Location in Computer Networks. Journal
of ACM 27, 718–735 (1980)

7. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling, Special
Issue on Approximation Algorithms for Scheduling Algorithms (part 2) 3(6), 343–
353 (2000)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

9. Haddad, E.: Runtime reallocation of divisible load under processor execution dead-
lines. In: Proceedings of the Third Workshop on Parallel and Distributed Real-Time
Systems, April 1995, pp. 30–31 (1995)

254 S.S.H. Tse

10. Harada, H., Ishikawa, Y., Hori, A., Tezuka, H., Sumimoto, S., Takahashi, T.: Dy-
namic home node reallocation on software distributed shared memory. In: Pro-
ceedings of the Fourth International Conference/Exhibition on High Performance
Computing in the Asia-Pacific Region, May 2000, vol. 1, pp. 158–163 (2000)

11. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, Section
6.2.4, vol. 3. Addison-Wesley, Reading (1973)

12. Narendran, B., Rangarajan, S., Yajnik, S.: Data Distribution Algorithms for Load
Balanced Fault-Tolerant Web Access. In: Proc. of the 16th Symposium on Reliable
Distributed Systems, Durham, NC, USA, pp. 97–106 (October 1997)

13. Rudin III, J.F.: Improved bounds for the online scheduling problem. PhD thesis,
The University of Texas at Dallas (2001)

14. Tse, S.S.H.: Approximation Algorithms for Document Placement in Distributed
Web Servers. IEEE Transactions on Parallel and Distributed Systems 16(6), 489–
496 (2005)

Procrastination Scheduling for Fixed-Priority Tasks
with Preemption Thresholds

XiaoChuan He and Yan Jia

Institute of Network Technology and Information Security
School of Computer Science

National University of Defense Technology
Changsha, China 410073

XiaoChuanHe@gmail.com

Abstract. Dynamic Voltage Scaling (DVS), which adjusts the clock speed and
supply voltage dynamically, is an effective technique in reducing the energy con-
sumption of embedded real-time systems. However, the longer a job executes, the
more energy in the leakage current the device/processor consumes for the job. Pro-
crastination scheduling, where task execution can be delayed to maximize the du-
ration of idle intervals by keeping the processor in a sleep/shutdown state even
if there are pending tasks within the timing constraints imposed by performance
requirements, has been proposed to minimize leakage energy drain. This paper tar-
gets energy-efficient fixed-priority with preemption threshold scheduling for pe-
riodic real-time tasks on a uniprocessor DVS system with non-negligible leakage
power consumption. We propose a two-phase algorithm. In the first phase, the ex-
ecution speed, i.e., the supply voltage of each task are determined by applying off-
line algorithms, and in the second phase, the procrastination length of each task
is derived by applying on-line simulated work-demand time analysis, and thus the
time moment to turn on/off the system is determined on the fly. A series of simula-
tion experiments was evaluated for the performance of our algorithms. The results
show that our proposed algorithms can derive energy-efficient schedules.

1 Introduction

Low power utilization has been an important issue for hardware manufacturing for
next-generation portable, scalable, and sophisticated embedded systems. To reduce the
power consumption without the sacrifice of performance, architectural techniques have
been proposed to dynamically trade the performance and power consumption. Dynamic
Voltage Scaling (DVS), which adjusts the supply voltage and its corresponding clock
frequency dynamically, is one of the most effective low-power design technique for
embedded real-time systems. Since the energy consumption of CMOS circuits has a
quadratic dependency on the supply voltage, lowering the supply voltage is one of the
most effective ways of reducing the energy consumption.

In many real-time applications, average or worst-case task response time is an im-
portant non-functional design requirement of the system. For example, to maintain the
system stability, many embedded real-time systems must complete the tasks before

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 255–265, 2008.
c© IFIP International Federation for Information Processing 2008

256 X. He and Y. Jia

their deadlines. For real-time systems targeting commercial variable voltage micro-
processors, since lowering the supply voltage also decreases the maximum achievable
clock speed [1], energy-efficient task scheduling is to reduce supply voltage dynami-
cally to the lowest possible level while satisfying the tasks’timing constraints. In the
past decade, energy-efficient task scheduling with various deadline constraints received
extensive attention, especially for the minimization of the energy consumption of the
dynamic voltage scaling part in a uniprocessor environment [2].

Recently, researchers have started exploring energy-efficient scheduling with the con-
siderations of leakage current since thepower consumption resulting from leakage current
is comparable to the dynamic power dissipation [3]. To reduce the energy consumption
resulting from leakage current, a system might be turned off (to enter a dormant mode).
For periodic real-time tasks, Jejurikar et al. [4] and Lee et al. [5] proposed energy-efficient
scheduling on a uniprocessor by procrastination scheduling to decide when to turn off the
system. Jejurikar and Gupta [3] then further considered real-time tasks that might com-
plete earlier than its worst-case estimation by extending the algorithms presented in [4].

Fixed-priority preemptive (FPP) scheduling algorithms and fixed-priority non-
preemptive (FPNP) scheduling algorithms are two important classes of real-time
scheduling algorithms. To obtain the benefits of both FPP and FPNP algorithms, there
are several other algorithms trying to fill the gap between them. The fixed-priority with
preemption threshold (FPPT) scheduling algorithm [6] is one of them. Under FPPT,
each task has a pair of priorities: regular priority and preemption threshold, where the
preemption threshold of a task is higher than or equal to its regular priority. The pre-
emption threshold represents the tasks running-time preemption priority level. It pre-
vents the preemption of the task from other tasks, unless the preempting tasks priority
is higher than the preemption threshold of the current running task. Saksena and Wang
have shown that task sets scheduled with FPPT can have significant schedulability im-
provements over task set using fixed priorities [6].

This paper considers energy-efficient FPPT scheduling of periodic real-time tasks on
a uniprocessor whose dynamic voltage scaling portion might be turned off for further en-
ergy saving. We further combine procrastination scheduling with dynamic voltage scaling
to minimize the total static and dynamic energy consumption of the system. An on-line al-
gorithm was developed to calculate the respective procrastination interval for each task. A
seriesof simulation experimentswasalso evaluated for theperformanceofouralgorithms.
The results show that our proposed algorithms can derive energy-efficient schedules.

The rest of this paper is organized as follows: Section 2 defines the leakage-aware
energy-efficient FPPT scheduling problem in a uniprocessor system. Preliminary results
are shown in Section 2. The proposed algorithms are in Section 3. Experimental results
for the performance evaluation of the proposed algorithms are presented in Section 4.
Section 5 is the conclusion.

2 System Model

2.1 Task Model

This study deals with the fixed priority preemptive scheduling of tasks in a real-time
systems with hard constraints, i.e., systems in which the respect of time constraints is
mandatory. The activities of the system are modeled by periodic tasks.

Procrastination Scheduling for Fixed-Priority Tasks with Preemption Thresholds 257

The model of the system is defined by a task set T of cardinality n, T = {τ1, τ2, ...,
τn}. The jth job of task τi is denoted as Ji,j . The index, j, for jobs of a task is started
from zero. A periodic task τi is characterized by a 3-tuple (Ci, Ti, Di) where each re-
quest of τi, called instance, has an execution CPU cycles (denoted as Ci), and a relative
deadline (denoted as Di). Ti time units separate two consecutive instances of τi (hence
Ti is the period of the task). Given a set T of n tasks, the hyper-period of T , denoted by
L, is defined so that L/Ti is an integer for any task τi in T . The number of jobs in the
hyper-period of task τi is L/Ti. For example, L is the least common multiple (LCM)
of the periods of tasks in T when the periods of tasks are all integer numbers. We focus
on the case that all of the tasks arrive at time 0.

We also associate with each task τi a unique priority πi ∈ {1, 2, ..., n} such that
contention for resources is resolved in favor of the job with the highest priority that is
ready to run.

The analysis presented in section 3 uses the concept of busy and idle periods [7].
These are defined as follows: A level-i busy period is a continuous time interval during
which the notional run-queue contains one or more tasks of active priority level πi or
higher. Similarly, a level-i idle period is a time interval during which the run-queue is
free of level πi or higher priority tasks. We note that the run queue may become mo-
mentarily free of level-i tasks, when one tasks completes and another is released. This
appears in our formulation as an idle period of zero length.

2.2 Power Consumption and Execution Models

We explore energy-efficient scheduling on a dynamic voltage scaling (DVS) processor.
The power consumption is contributed by the dynamic power consumption resulting
from the charging and discharging of gates on the CMOS circuits and the static power
consumption resulting from leakage current. The dynamic power consumption Pd of
the dynamic voltage scaling part of the processor is a function of the adopted processor
speed f :

Pd = CeffV 2
DDf (1)

f = αk′ (VDD − VTH)α

VDD
(2)

where k′ is a device related parameter, VTH is the threshold voltage, Ceff is the effec-
tive switching capacitance per cycle and α ranges from 2 to 1.2 depending on the device
technology. Since power varies linearly with the clock speed and the square of the volt-
age, adjusting both can produce cubic power reductions, at least in theory. The static
power consumption Ps of the system comes from the leakage current of the processor,
system I/O devices, and RAM. It might be modeled as a nonnegative constant, as in [8],
or a linear function of the supply voltage (a sub-linear function of the execution speed)
[3], [4],[9], [10].

The power consumption of processor is denoted by P , which is the sum of the dy-
namic and static power consumption. We consider systems in which P (f) is a convex
and increasing function, and P (f)/f is a convex function, similarly to [4],[11].

258 X. He and Y. Jia

Recent processors support multiple variable voltage and frequency levels for energy
efficient operation of the system. Let the available frequencies be {FLK1, FLK2, ...,
FLKs} in increasing order of frequency and the corresponding voltage levels be {v1,
v2, ..., vs}. We assume that the CPU speed fi of task τi can be changed between a min-
imum speed FLK1 (minimum supply voltage necessary to keep the system functional)
and a maximum speed FLKs. In our framework, the voltage/speed changes take place
only at context switch time and while state saving instructions execute. If not negligible,
the voltage change overhead can be incorporated into the worst-case workload of each
task.

The system could enter the dormant mode (or be turned off) whenever needed. The
power consumption of the system is treated as 0 when it is in the dormant mode [8] by
scaling the static power consumption. We consider systems that could be turned on/off
at instant. When needed, turning the system off might further reduce the energy con-
sumption. The energy consumption to turn off the system is assumed to be negligible,
but it might require additional energy to turn on the system [12]. We denote Esw as the
energy of the switching overhead from the dormant mode to the active mode. For the
rest of this paper, we say the system is idle at time instant t, if the processor does not
execute any task at time instant t. When the system is active and idle, the processor exe-
cutes NOP instructions and must be at processor speed FLK1 to minimize the energy
consumption. Let PI be the power consumption when the system is idle and active,
where PI = P (FLK1).

2.3 Critical Speed

The critical speed f̂ is defined as the available speed of the processor to execute a cycle
with the minimum energy consumption. Because of the convexity of P (f), executing at
a common speed for a CPU cycle minimizes the energy consumption. Hence, the energy
consumption to execute a CPU cycle at speed f is P (f)/f . Since the power consump-
tion function P (f) is a convex and increasing function, where P (f)/f is merely a
convex function. P (f)/f is minimized when f is equal to f∗, with d(P (f∗)/f∗)

df∗ = 0.
As a result, to minimize the execution energy consumption of T , we do not have to con-
sider schedules that execute jobs at any lower speed than f∗ since we could execute jobs
at speed f∗ with lower energy consumption and less execution time. If f∗ is between
FLK1 and FLKs, we know that f̂ is f∗. If f∗ is less than FLK1, f̂ is set to FLK1 to
satisfy the hardware constraint. Similarly, if f∗ is greater than FLKs, f̂ is set to FLKs,
and jobs are executed at FLKs to minimize the energy consumption. As a result, f̂ is
min{max{f∗, FLK1}, FLKs}. Executing a job of task τi at any speed less than f̂

would either consume more energy than that at f̂ with more execution time or violate
the speed constraint. We assume that f∗ could be obtained efficiently or pre-determined
as a specified parameter in the input.

2.4 Problem definition

The problem considered in this paper is as follows:

Procrastination Scheduling for Fixed-Priority Tasks with Preemption Thresholds 259

Definition 1. (Leakage-Aware Energy-Efficient Scheduling for FPPT, LAEES-FPPT)
Consider a set T of n independent tasks ready at time 0. Each periodic task τi ∈ T
is associated with a computation requirement equal to Ci CPU-cycles and its period
Ti, where the relative deadline of τi is equal to Di. And each task τi ∈ T is assigned
with a unique priority πi ∈ {1, 2, ..., n} and a preemption threshold γi ∈ {1, 2, ..., n}
(γi ≥ πi), where πi is used to compete for processor and gammai is used to protect
τi from unnecessary task preemptions after τi starts. The power consumption function
P (f) is a convex and increasing function, while P (f)/f is merely a convex function.
The processor is with a discrete spectrum of the available speeds in [FLK1, FLKs].
The energy of the switching overhead from the dormant mode to the active mode of a
system is Esw , and the power consumption when the system is active and idle is PI

. The problem is to minimize the energy consumption in the hyper-period L of tasks
in T in the scheduling of fixed-priority tasks with preemption thresholds in T without
missing the timing constraints. ��

A schedule of a task set T is an assignment of the available processor speeds for each
corresponding task execution, where the job arrivals of each task τi ∈ T satisfy its
timing constraint Di. A schedule is feasible if no job misses its deadline. A schedule
is optimal for the LAEES-FPPT problem, if it is feasible, and its energy consumption
is the minimum among all feasible schedules. For the rest of this paper, let S∗ be an
optimal schedule for T . For a schedule, an idle interval is a maximal interval when the
system is idle, while an execution interval is a maximal interval when the processor
executes some jobs. The system might be turned off or be at the active mode in an idle
interval, while the system is active in an execution interval. For any set X, let |X | be the
cardinality of the set. For example, |IS | is the number of idle intervals in schedule S in
(0, L]. If the idle interval is greater than Esw/PI , turning off the system is worthwhile.
Let tθ be the threshold idle interval Esw/PI . If the idle interval is greater than tθ , the
longer the idle interval is, the more the energy saved by turning off the system.

The energy consumption of a schedule S, denoted as E(S), consists of two parts:
the execution energy consumption φ(S) and the idle energy consumption ε(S). The
execution energy consumption is the sum of the energy consumption of the executions
of jobs in S in the time interval (0, L]. The idle energy consumption is the sum of
the energy consumption in the intervals in (0, L] in which the system does not execute
any job. Let υ(t, S) be the speed at time instant t in schedule S. The execution energy
consumption φ(S) in E(S) is

∫ L
0

P (υ(t, S))dt. The idle energy consumption ε(S) in
E(S) is the summation of Esw times the number of instances that the system is turned
from the dormant mode to the active mode and PI times the total interval length that
the system is idle and active in (0, L].

3 Proposed Algorithms

This section presents a two-phase algorithm for periodic real-time tasks. The algorithms
determine, in the first phase, the execution speed, i.e., the supply voltage, of each task,
and in the second phase the moment to turn on/off the system on the fly.

260 X. He and Y. Jia

3.1 An On-Line Procrastination Algorithm to Minimize the Energy Leakage:
LA-FPPT

Let Se be the resulting FPPT schedule by applying some off-line dvs algorithms [13].
For brevity, let Ci be the execution time of a job of task τi in Se, Ci = Ci

/
fopt

i . The
first phase of the proposed algorithm [13] decides the execution speed of tasks in T to
meet the timing constraints and minimize the execution energy consumption.

The second phase is to reduce the idle energy consumption by turning the system
off on the fly. The idea behind scheduling on the fly is to lengthen and aggregate the
idle intervals so that the resulting idle time is long enough to turn off the system. The
determination of idle intervals can be done by procrastinating the arrival time of the next
job to the system, as in [4],[14] for EDF scheduling, and in [9],[11] for fixed-priority
scheduling. In [4], [9]procrastination is done by computing the maximum procrastination
intervals of all of the tasks in T based on the system utilization, while the idle intervals
in [14],[11] are determined by procrastinating the remaining jobs as late as possible.

In this section, we proposes an on-line simulated work-demand analysis approach to
the determination of idle intervals. If a job completes at time instant t, and the ready
queue is empty, we have to decide whether the system should be turned off or idle. Let
ri(t) be the arrival time of the next job of τi for any τi in T arrived after time instant t,

i.e., ri(t) =
⌈

t
Ti

⌉
· Ti. Let di(t) be the next deadline on an invocation of task τi after

time instant t, i.e., di(t) = ri(t) + Di.
Our formulation stems from considering the schedulability of each fixed-priority task

with preemption thresholds at time instant t. We focus on finding the maximum amount
of idle interval, Smax

πi
(t), which may be stolen at priority level πi, during the interval

[t, t + di(t)), whilst guaranteeing that task τi meets its deadline. (Note, Smax
πi

(t) may
not actually be available for idle due to the constraints on hard deadline tasks with
priorities lower than πi. We return to this point later). To guarantee that task τi will
meet its deadline, we need to analyze the worst case scenario from time t onwards. We
therefore assume that all tasks τj are re-invoked at their earliest possible next release
rj(t) and subsequently with a period of Tj .

In attempting to determine the maximum guaranteed idle time, Smax
πi

(t), it is instruc-
tive to view the interval [t, t + di(t)) as comprising a number of level-i busy and idle
periods. Any level-i idle time between the completion of task τi and its deadline could
be swapped for task τi’s procrastination interval Zi without causing the deadline to be
missed. Hence the maximum procrastination interval Zi which may be stolen is equal
to the total level-i idle time in the interval. We use this result to calculate Smax

πi
(t).

We first derive equation 3 using techniques given in [15]. Although the ready queue
is empty at time instant t, two components still determine the extent of the busy period
under the influence of procrastination scheduling:

1. For the task τk with priority πk < πi < γk, τk’s released workload just before the
start of busy period

2. For the task τj with priority πj > γi, τj’s released workload during the busy period

The second component implies a recursive definition. As the processing released in-
creases monotonically with the length of the busy period, a recurrence relation can be
used to find wi(t):

Procrastination Scheduling for Fixed-Priority Tasks with Preemption Thresholds 261

wm+1
πi

(t) = Sπi(t) + max
∀k,πk<πi<γk

Ck +
∑

∀j,πj>πi

(⌈
wm

πi
(t) − xj(t)

Tj

⌉
· Cj

)
(3)

The term Sπi(t) represents the beginning of level-i idle time from time t.
The recurrence relation begins with w0

πi
(t) = 0 and ends when wm+1

πi
(t) = wm

πi
(t)

or wm+1
πi

(t) > di(t). Proof of convergence follows from analysis of similar recurrence
relations by Audsley et al [15]. The final value of wπi(t) defines the length of the busy
period. Alternatively, we may view t+wπi(t) as defining the start of a level-i idle time.

Given the start of a level-i idle time, within the interval [t, t + di(t)), the end of the
idle time, which may be converted to procrastination interval of task τi, occurs either at
the next release of a task τj with priority πj > πi or at the end of the interval. Equation
4 gives the length, li(t, wπi(t)), of the level-i idle time.

li(t, wπi(t)) = min

[
di(t) − wi(t),

min
∀j,πj≥γi

(⌈
wπi

(t)−rj(t)

Tj

⌉
· Tj + rj(t) − wπi(t)

)]
(4)

where the term di(t) − wπi(t) means that the end of level-i idle time come about at

the end of [t, t + di(t)), the term
⌈

wπi
(t)−rj(t)

Tj

⌉
· Tj + rj(t) describe the workload

contributed by task τj in the level-i busy period, whose length is denoted by wπi(t).
Combining equations 3 and 4, our method for determining the maximum idle time,

Smax
πi

(t), proceeds as follows:

1. The idle time which may be derived, Sπi(t), is initially set to zero
2. Equation 3 is used to compute the end of a busy period in the interval [t, t + di(t))
3. The end of the busy period is used as the start of an idle period by equation 4 which

returns the length of contiguous idle time.
4. The idle time, Sπi(t) is incremented by the amount of idle time found in step 3.
5. If the deadline on task τi has been reached, then the maximum idle time which can

be derived is given by Sπi(t). Otherwise, we repeat steps 2 to 5.

The pseudo-codes of dynamic procrastination algorithm at time instant t when the
ready queue is empty, and a job completes are shown in Algorithm 1.

4 Case Studies and Simulations

Section 3 showed that our two-phase algorithm (EE-FPPT [13] + LA-PFFT) will always
render the controlled leakage current in CMOS circuits and reduced energy consump-
tions that will maintain the schedulability of the workload. we use randomly-generated
workloads to examine broad trends across a range of design points.

We investigate workload characteristics that affect the energy saving capability at-
tainable through LA-FPPT. We now simulate and analyze randomly generated systems

262 X. He and Y. Jia

Algorithm 1. On-line Algorithm to Minimize Energy Leakage
1: procedure DYNAMIC PROCRASTINATION(t)

� a job completes at t and the ready queue is empty
2: sort T by ascending priority order
3: for (i = 1; i ≤ n; i �= n) do

4: ri(t) ←
⌈

t
Ti

⌉
· Ti

5: di(t) ← ri(t) + Di

6: Sπi(t) ← 0
7: wm+1

πi
(t) ← 0

8: while (wm+1
πi

(t) ≤ di(t)) do
9: wm

πi
(t) ← wm+1

πi
(t)

10:

wm+1
πi

(t) = Si(t) + max
∀k,πk<πi<γk

Ck +
∑

∀j,πj≥πi

(⌈
wm

πi
(t) − rj(t)

Tj

⌉
· Cj

)

11: if (wm
πi

(t) = wm+1
πi

(t)) then
Sπi(t) ← Sπi(t) + li(t, w

m
πi

(t))
wm+1

πi
(t) ← wm+1

πi
(t) + li(t,w

m
πi

(t))
12: end if
13: end while
14: Smax

πi
(t) ← Si(t)

15: revise the arrival time r′i(t) of job Ji,t by setting r′i(t) ← ri(t) + Smax
πi

(t)
16: end for
17: if (min

∀τi∈T
r′i(t) − t > tθ) then

18: turn the system off at time t and turn on at min
∀τi∈T

r′i(t)

19: else
20: remain on the active mode
21: end if
22: end procedure

of tasks to better understand our approaches. The power consumption function of the
system speed f was set as P (f) = f3 + 3.

The normalized total energy was adopted as the performance metrics. The normal-
ized total energy of an algorithm for an input instance is the energy consumption of the
derived solution in (0, L] divided by the energy consumption by applying the original
FPPT scheduling without processor slowdown, procrastination and by turning off the
system when the idle interval is long enough.

We tried two different experimental settings. The first experiment investigate sepa-
rately the effect of the switching overhead Esw, the system utilization on the limited
energy consumption achieved by our methods. To cover a wide range of design points,
20,000 real-time task sets with 10 tasks each were randomly generated. These were cre-
ated so 1000 have a utilization of 50%, 1000 have 52% utilization, and so on up to 90%.
For each group of task sets who hold the same utilization, those were created so 20 have
a Esw of 0.03, 20 have 0.04, and so on up to 0.53. The second one focused on the impact
of the number of tasks and Esw (0.17), another 20,000 real-time task sets with system

Procrastination Scheduling for Fixed-Priority Tasks with Preemption Thresholds 263

utilization 67% each were randomly generated too. Those were created so 1000 include
5 independent tasks, 1000 include 6 independent tasks, and so on up to 25 tasks.

Task periods is assigned randomly in the range [1, 100] with a uniform probability
distribution function. Moreover, task deadlines were set equal to their respective periods
(for simplicity, though not necessary). Tasks’ WCETs were set to incur the required
overall system utilization. All 40,000 real-time task sets generated were schedulable
with a fully preemptive policy.

Using the MPTA, the total energy produced by each system was computed and nor-
malized to the energy required by the original version of the system. The average nor-
malized energy were then plotted as a function of Esw , the system utilization and the
number of tasks in turn. The results are shown in figures 1(a), 1(b) and 2(a) respectively.

Esw

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
ne

rg
y

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

EE-FPPT
EE-FPPT + LA-FPPT

(a) Energy consumption produced for LA-
FPPT rises with large Esw, but keep al-
most constant for EE-FPPT, with system
utilization = 0.67

Utilization

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
ne

rg
y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

01.0

01.1

01.2

EE-FPPT
EE-FPPT + LA-FPPT

(b) Energy consumption rises with system
utilization, but soars up for high-utilization
systems.

Fig. 1. Experiment I results for power saving of our approaches

Number of Tasks

6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
ne

rg
y

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

EE-FPPT
EE-FPPT + LA-FPPT

(a) Energy consumption declines with the
increment of the number of tasks, on the
condition that system utilization = 0.67
and Esw = 0.17

Normalized Energy Consumption

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

P
er

ce
nt

 o
f S

ys
te

m
s

00.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Utilization = 30%
Utilization = 40%
Utilization = 50%
Utilization = 60%

(b) EE-FPPT + LA-FPPT dramatically ac-
complishes the energy savings, even for
high-utilization systems.

Fig. 2. Experiment II results for power saving of our approaches

264 X. He and Y. Jia

In Figure 1(a), the more the switching overhead Esw was, the more the normalized
energy consumption was for schedules derived from Algorithms LA-FPPT. When Esw

is relatively small (Esw ≤ 0.18), the energy consumption from leakage current in
CMOS circuits still have litter influence on the total energy consumption, thus the more
Esw, the less normalized energy consumption.

In Figure 1(b), our algorithms (EE-FPPT + LA-FPPT) outperformed original Al-
gorithm FPPT when the system utilization was greater than 0.87. When the system
utilization was large enough, procrastination might create two (or more) idle intervals
to turn the system off, but the original FPPT schedule might make the system idle for
a short interval and turn the system off for a longer interval. As a result, the energy
consumption of procrastination schedules might consume more energy than the orig-
inal FPPT schedule when the system utilization is large enough. Moreover, when the
utilization for task execution is large, the improvement on idle energy consumption is
marginal since task execution dominates the total energy consumption.

In Figure 2(a), for all the simulated algorithms, the normalized energy consumption
decreased for small number of tasks with n ≤ 12, and was steady for n > 12. This is
because the resulting utilization of a task was large when n was small in the experimen-
tal setup, and, hence, there was only little room for procrastination to save energy. For
task sets with n > 12, the maximum procrastination interval was dominated by tasks
with small periods, and, hence, the improvement became marginal.

Another interesting property is the distribution of the 20,000 systems of Experiment
I among the different normalized power consumption levels. Figure 2(b) show this dis-
tribution for the overall system utilization levels of 30%, 40%, 50%, and 60%, respec-
tively. As can be seen, the workloads scheduled with the fixed-priority schemes depend
on the system utilization level to some extent.

5 Conclusions

In this paper we discuss the energy-efficient scheduling problem of periodic realtime
tasks by applying FPPT policy on a uniprocessor dynamic voltage scaling system that
can go into the dormant mode for energy efficiency. We propose a two-phase scheduling
algorithm. In the first phase, the execution speed, i.e., the supply voltage, of each task
is determined by applying off-line algorithms. In the second phase, the time moment
to turn on/off the system is determined on the fly. Theoretical analysis shows that our
proposed algorithms could derive scheduling solutions with at most max{ 1

(Ubd)2
, 2}

times of the energy consumption of optimal solutions, where the term Ubd represents
the breakdown utilization [16] of a task set. A series of simulation experiments was
evaluated to demonstrate the performance of the proposed algorithms. Our experimental
results show that our approaches can accomplish dramatic energy savings as the same
time keep the schedulability of task set.

References

1. Takayasu Sakurai, A.R.N.: Alpha-power law mosfet model and its applications to cmos in-
verterdelay and other formulas. IEEE Journal of Solid-State Circuits 25(2), 584–594 (1990)

Procrastination Scheduling for Fixed-Priority Tasks with Preemption Thresholds 265

2. Padmanabhan Pillai, K.G.S.: Real-time dynamic voltage scaling for low-power embedded
operating systems. In: 18th ACM Symposium on Operating System Principles, Chateau Lake
Louise, Banff, Alberta, Canada, vol. 35, pp. 89–102. ACM, New York (2001)

3. Ravindra Jejurikar, R.K.G.: Dynamic slack reclamation with procrastination scheduling in
real-time embedded systems. In: Joyner Jr., W.H., Martin, G., Kahng, A.B. (eds.) 42nd De-
sign Automation Conference, San Diego, CA, USA, pp. 111–116. ACM Press, New York
(2005)

4. Jejurikar, R., Pereira, C., Gupta, R.K.: Leakage aware dynamic voltage scaling for real-time
embedded systems. In: Kahng, S.M., Fix, L., Andrew, B. (eds.) 41th Design Automation
Conference, San Diego, CA, USA, pp. 275–280. ACM, New York (2004)

5. Lee, Y.-H., Reddy, K.P., Mani Krishna, C.: Scheduling techniques for reducing leakage
power in hard real-time systems. In: 15th Euromicro Conference on Real-Time Systems
(ECRTS 2003), Porto, Portugal, pp. 105–112. IEEE Computer Society, Los Alamitos (2003)

6. Manas Saksena, Y.W.: Scalable real-time system design using preemption thresholds. In:
21st IEEE Real-Time Systems Symposium, pp. 25–34 (2000)

7. Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In:
IEEE Real-Time Systems Symposium, Lake Buena Vista, Florida, USA, pp. 201–213. IEEE
Computer Society Press, Los Alamitos (1990)

8. Xu, R., Zhu, D., Rusu, C., Chem, R.G.M., Moaaé, D.: Energy-efficient policies for embedded
clusters. In: Paek, Y., Gupta, R. (eds.) 2005 ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, Chicago, Illinois, USA. ACM, New
York (2005)

9. Ravindra Jejurikar, R.K.G.: Procrastination scheduling in fixed priority real-time systems.
In: 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, Washington, DC, USA, pp. 57–66. ACM, New York (2004)

10. Ravindra Jejurikar, R.K.G.: Dynamic voltage scaling for systemwide energy minimization in
real-time embedded systems. In: Roy, R.V.J., Choi, K., Tiwari, V. (eds.) 2004 International
Symposium on Low Power Electronics and Design, Newport Beach, California, USA, pp.
78–81. ACM, New York (2004)

11. Quan, G., Niu, L., Hu., X.S., Mochocki, B.: Fixed priority scheduling for reducing over-
all energy on variable voltage processors. In: 25th IEEE Real-Time Systems Symposium,
Lisbon, Portugal, pp. 309–318. IEEE Computer Society, Los Alamitos (2004)

12. Irani, S., Shukla, S.K., Gupta, R.K.: Algorithms for power savings. In: Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 37–46. ACM, New York (2003)

13. XiaoChuan He, Y.J.: Energy-efficient scheduling fixed-priority tasks with preemption thresh-
olds on variable voltage processors. In: Li, K., Jesshope, C., Jin, H., Gaudiot, J.-L. (eds.) NPC
2007. LNCS, vol. 4672, pp. 133–142. Springer, Heidelberg (2007)

14. Linwei Niu, G.Q.: Reducing both dynamic and leakage energy consumption for hard real-
time systems. In: Irwin, M.J., Zhao, W., Lavagno, L., Mahlke, S.A. (eds.) 2004 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Washington
DC, USA, pp. 140–148. ACM, New York (2004)

15. Audsley, N.C., Burns, A., Richardson., M.F., Wellings, A.J.: Applying new scheduling theory
to static priority pre-emptive scheduling. Software Engineering Journal 8(5), 284–292 (1993)

16. Lehoczky, J.P., Lui Sha, Y.D.: The rate monotonic scheduling algorithm: Exact characteriza-
tion and average case behavior. In: IEEE Real-Time Systems Symposium 1989, pp. 166–171
(1989)

Survey on Parallel Programming Model

Henry Kasim1,2, Verdi March1,3, Rita Zhang1, and Simon See1,2

1 Asia-Pacific Science and Technology Center (APSTC), Sun Microsystems
2 Department of Mechanical & Aerospace Engineering, Nanyang Technological

University
3 Department of Computer Science, National University of Singapore

{henry.kasim,verdi.march,rita.zhang,simon.see}@sun.com

Abstract. The development of microprocessors design has been shifting
to multi-core architectures. Therefore, it is expected that parallelism will
play a significant role in future generations of applications. Throughout
the years, there has been a myriad number of parallel programming mod-
els proposed. In choosing a parallel programming model, not only the per-
formance aspect is important, but also qualitative the aspect of how well
parallelism is abstracted to developers. A model with a well abstraction
of parallelism leads to a higher application-development productivity. In
this paper, we propose seven criteria to qualitatively evaluate parallel
programming models. Our focus is on how parallelism is abstracted and
presented to application developers. As a case study, we use these criteria
to investigate six well-known parallel programming models in the HPC
community.

Keywords: shared memory, distributed memory, Pthreads, OpenMP,
CUDA, MPI, UPC, Fortress.

1 Introduction

The aim of parallel computing is to increase an application’s performance by
executing the application on multiple processors. While parallel computing has
been traditionally associated with the HPC (high performance computing) com-
munity, it is becoming more prevalent for the mainstream computing due to the
recent development of commodity multi-core architecture. The multi-core archi-
tecture, and soon many-core, is a new paradigm in keeping up with the Moore’s
law. It is motivated by challenges to traditional paradigm of continuously in-
creasing CPU frequency: physical limit of transistors size, power consumption,
and heat dissipation [1,2]. Consequently, it is expected that future generations
of applications would heavily exploit the parallelism offered by the multi-core
architecture.

There are two main approaches to parallelize applications: auto parallelization
and parallel programming; they differ in terms of the achievable application per-
formance and ease of parallelization. The auto-parallelization approach, e.g. ILP
(instruction level parallelism) or parallel compilers [3], automatically parallelizes
applications that have been developed using sequential programming models.

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 266–275, 2008.
c© IFIP International Federation for Information Processing 2008

Survey on Parallel Programming Model 267

The advantage of this approach is that existing/legacy applications need not
be modified, e.g. applications just need to be recompiled with a parallel com-
piler. Therefore, programmers need not to learn new programming paradigms.
However, this also becomes a limiting factor in exploiting a higher degree of
parallelism: it is extremely challenging to automatically transform algorithms
with a sequential nature into parallel ones. In contrast to auto parallelization,
with the parallel programming approach, applications are specifically developed
to exploit parallelism. Generally, developing a parallel application involves parti-
tioning workload into tasks and mapping of tasks into workers. Parallel program-
ming is perceived to result in higher performance gain than auto parallelization,
but at the expense of more parallelization efforts.

Throughout the years, there have been a myriad number of parallel program-
ming models proposed. A typical consideration in choosing a model is the perfor-
mance of the resulted applications. However, it is equally important to also consider
qualitative aspects of models. One such qualitative aspect is how parallelism is ab-
stracted and presented to application developers. To evaluate this aspect, we pro-
pose that each model is evaluated based on seven criteria: (i) system architecture,
(ii) programming methodologies, (iii) worker management, (iv) workload parti-
tioning scheme, (v) task-to-worker mapping, (vi) synchronization, and (vii) com-
munication model. Out list of criteria is inspired by Asanovic et. al. [4].

In this paper, we describe seven qualitative criteria to evaluate parallel pro-
gramming models. Our goal is to emphasize to people new to parallelism that
apart from performance of resulted applications, one should also consider how
the chosen programming model affects the productivity of software develop-
ment. The contributions of this paper are two fold. Firstly, we extend the four
criteria in Asanovic et. al. [4] with three new criteria (i.e. system architecture,
programming methodologies and worker management). Secondly, we present an
investigation of six parallel programming models in the HPC community: three
well-established models (i.e. Pthreads [5], OpenMP [6,7], and MPI [8]) and three
relatively new models (i.e. UPC [9,10], Fortress [11], and CUDA [12]).

The remainder of this paper is organized as follow. Section 2 defines the seven
criteria and Section 3 present a study of six parallel programming models based
on the criteria. Finally, Section 4 summarizes this paper.

2 The Seven Criteria

In this section, we describe seven criteria to qualitatively evaluate a parallel
programming model.

1. System Architecture
We consider two architectures: shared memory and distributed memory.
Shared memory architecture refers to systems such as an SMP/MPP node
whereby all processors share a single address space. With such models, appli-
cations can run and utilize only processors within a single node. On the other
hand, distributed memory architecture refers to systems such as a cluster of
compute nodes whereby there is one address space per node.

268 H. Kasim et al.

Fig. 1. Six Programming Models and their Supported System Architecture

Fig. 1 illustrates the supported system architecture of the six programming
models. As can be seen, Pthreads, OpenMP and CUDA support shared
memory architecture, and thus can only run and utilize processors within
a single node. On the other hand, MPI, UPC and Fortress also support
distributed memory architecture so that applications developed with these
model can run on single node (i.e. shared memory architecture) or multiple
nodes.

2. Programming Methodologies
We look at how parallelism capabilities are exposed to programmers. For
examples, API, special directives, new language specification, etc.

3. Worker Management
This criteria looks at the creation of the unit of worker, threads or proces-
sors. Worker management is implicit when there is no need for programmers
to manage the lifetime of workers. Rather, they need to only specify, for
example, the number of unit of workers required or the section of code to be
run in parallel. In explicit approach, programmer needs to code the creation
and destruction of workers.

4. Workload Partitioning Scheme
Worker partitioning defines how the workload are divided into smaller chunks
called tasks. In implicit approach, typically programmers needs to only spec-
ify that a workload can be processed in parallel. How the workload is actually
partitioned into tasks need not be managed by programmers. In contrast,
with the explicit approach, programmers need to manually decide how work-
load is partitioned.

5. Task-to-Worker Mapping
Task-to-worker mapping defines how tasks are map onto workers. In the
implicit approach, programmers do not need to specify which worker is re-
sponsible for a particular task. In contrast, the explicit approach requires
programmers to manage how tasks are assigned to workers.

6. Synchronization
Synchronization defines the time order in which workers access shared data.
In implicit synchronization, there is no or little programming effort done

Survey on Parallel Programming Model 269

by programmers: either no synchronization constructs are needed or it is
sufficient to only specify that a synchronization is needed. In explicit syn-
chronization, programmers are required to manage the worker’s access to the
shared.

7. Communication Model
This aspect looks at the communication paradigm used by a model.

3 Parallel Programming Model

In this section, we evaluate six parallel programming models using the criteria
presented in Section 2. The overall summary is shown in Table 1.

Table 1. Evaluation of Six Parallel Programming Models

(a) Shared Memory

Criteria MPI UPC Fortress

Unit of Workers Thread Thread Thread
Programming Methodologies API, C, Fortran API, C, Fortran API, Extension to C
Worker Management Explicit Implicit Implicit
Workload Partitioning Explicit Implicit Explicit
Worker Mapping Explicit Implicit Explicit
Synchronization Explicit Implicit Explicit

Communication Model
Shared Address
Space

Shared Address
Space

Shared Address
Space

(b) Distributed Memory

Criteria MPI UPC Fortress

Unit of Workers Process Thread Thread
Programming Methodologies API, C, Fortran API, C New Language
Worker Management Implicit Implicit Implicit/Explicit
Workload Partitioning Explicit Implicit/Explicit Implicit/Explicit
Worker Mapping Explicit Implicit/Explicit Implicit/Explicit
Synchronization Implicit Implicit/Explicit Implicit/Explicit

Communication Model Message Passing
Partitioned Global
Address Space

Global Address
Space

3.1 Pthreads

Pthreads or Portable Operating System Interface (POSIX) Threads is a set of C
programming language types and procedure calls [5]. Pthreads is implemented
as a header (pthread.h) and a library for creating and manipulating each of the
workers called threads.

270 H. Kasim et al.

Worker management in Pthreads requires programmer to explicitly create and
destroy threads by making use of pthread create and pthread exit function.
Function pthread create requires four parameters: (i) the thread used to run
tasks, (ii) attribute, (iii) tasks to be run by thread in routine call, and (iv) routine
argument. The thread created will run the routine until pthread exit function
has been called.

Workload partitioning and task mapping are explicitly specified by program-
mers as arguments to pthread create. The workload partitioning is specified by
programmers on the third passing parameter in the form of a routine call, while
task mapping is specify on the first passing parameters in the pthreads create
function. A thread can join other threads using pthread join. When the func-
tion is called, the calling thread will hold its execution until the target thread
finish before joining the threads.

When multiple threads access the shared data, programmers have to be aware
of data race and deadlocks. To protect critical section, i.e. the portion of code
that accesses shared data, Pthreads provides mutex (mutual exclusion) and
semaphore [13]. Mutex permits only one thread to enter a critical section at
a time, whereas semaphore allows several threads to enter a critical section.

3.2 OpenMP

OpenMP is an open specification for shared memory parallelism [6,7]. It consists
of a set of compiler directives, callable runtime library routines and environment
variables that extend Fortran, C and C++ programs. OpenMP is portable across
the shared memory architecture. The unit of workers in OpenMP is threads.

The worker management is implicit. Special directives are used to specify
that a section of code is to be run in parallel. The number of threads to be used
is specified using an out-of-band mechanism which is an environment variable.
Thus, unlike Pthread, there is no need for programmers to manage the lifetime
of threads.

Workload partitioning and task-to-worker mapping require a relatively few
programming effort. Programmers just need to specify compiler directives to
denote a parallel region, namely (i) #pragma omp parallel {} for C/C++,
and (ii) !$omp parallel and !$omp end parallel for Fortran. OpenMP also
abstracts away how workload (e.g. an array) is divided into tasks (e.g. sub-arrays)
and how tasks are assigned to threads.

OpenMP supports several constructs to support implicit synchronization
where programmers specify only where synchronization occurs (Table 2). The ac-
tual synchronization mechanism is thus relieved from the programmers’
responsibility.

3.3 CUDA

CUDA (Compute Unified Device Architecture) is the extension of C programming
language designed to support of parallel processing on Nvidia GPU (Graphics Pro-
cessing Unit) [12]. CUDA views a parallel system as consisting of a host device (i.e.

Survey on Parallel Programming Model 271

Table 2. Synchronization Constructs in OpenMP

C
¯
onstruct Description

Barrier Allow synchronization on all threads within the same group
Atomic Allow all threads execute, but only one of load or store at a time
Ordered Allow the block of code to be execute sequentially
Flush Ensure all threads have a consistent view of certain objects in memory

Fig. 2. CUDA Architecture

CPU) and computation resource (i.e. GPU). The computation of tasks is done in
GPU by a set of threads that run in parallel. The GPU architecture for threads
consist of two-level hierarchy, namely block and grid (Fig. 2). Block is a set of
tightly coupled threads where each thread is identified by a thread ID, while grid
is a set of loosely coupled of blocks with similar size and dimension.

Worker management in CUDA is done implicitly; programmers do not man-
age thread creations and destructions. They just need to specify the dimension
of the grid and block required to process a certain task. While workload parti-
tioning and worker mapping in CUDA is done explicitly. Programmers have to
define the workload to be run in parallel by using Global Function<<<dimGrid,
dimBlock>>> (Arguments) construct where (i) Global Function is the global
function call to be run in threads, (ii) dimGrid is the dimension and size of the
grid, (iii) dimBlock is the dimension and size of each block and (iv) Arguments
represent the passing value for the global function. The task to worker map-
ping of CUDA programming is defined on <<<dimGrid, dimBlock>>> within
the command call mentioned before.

272 H. Kasim et al.

Synchronization for all threads in CUDA is done implicitly through function
syncthreads(). This function will coordinate communication among threads

of the same block. The function requires a minimum of 4 clock cycles as the
overhead, i.e. when no thread is waiting for other threads.

3.4 MPI

Message Passing Interface (MPI) is a specification for message passing operations
[8]. It defines each worker as a process. MPI is currently the de-facto standard
for developing HPC applications on distributed memory architecture. It provides
language bindings for C, C++1, and Fortran. Some of the well-known MPI
implementation includes OpenMPI [14], MVAPICH [15], MPICH [16], GridMPI
[17], and LAM/MPI [18].

Worker management is done implicitly whereby it is not necessary to code
the creation, scheduling, or destruction of processes. Instead, one only needs
to use a command-line tool, mpirun, to tell the MPI runtime how many pro-
cesses are needed, and optionally the mapping of processes to processors. Based
on this information, the runtime infrastructure will then carry out the worker
management on behalf of users.

Workload partitioning and task mapping have to be done by programmers,
similar to Pthread. Programmers have to manage what tasks to be computed
by each process. As an example, given a 2-D array (i.e. the workload), one can
use a process’ identifier (i.e. rank) to determine which sub-array (i.e. a task)
the process will compute. Communication among processes adopts the message-
passing paradigm where data sharing is done by one process sending the data to
other processes. MPI broadly classifies its message-passing operations as point-
to-point and collective. Point-to-point operations such as the MPI Send/MPI Recv
pair facilitate communications between processes, whereas collective operations
such as MPI Bcast facilitate communications involving more than two processes.

MPI Barrier is used to specify that a synchronization is needed. The barrier
operation blocks each process from continuing its execution until all processes
have enter the barrier. A typical usage of barrier is to ensure that global data
has been dispersed to appropriate processes.

3.5 UPC

UPC (Unified Parallel C) is a parallel programming language for shared
memory architecture and distributed memory architecture [9,10]. Regardless
of the system architecture, UPC adopts the concept of partitioned memory.
With this concept, programmers view the system as one global address space
which is logically partitioned into a number of per-thread address spaces. Each
thread has two types of memory accesses: to its own private address space or to
other threads’ address space. Accesses to both types of per-thread address space
use the same syntax. To improve the performance of memory accesses, UPC

1 Supported only on MPI-2.

Survey on Parallel Programming Model 273

T
ab

le
3.

S
y
n
ch

ro
n
iz

a
ti
o
n

C
o
n
st

ru
ct

s
in

U
P

C

y

M
ec

h
an

is
m

S
y
n
ta

x
Im

p
li
ci

t/
E
x
p
li
ci

t
D

es
cr

ip
ti

on

B
a
rr

ie
r

u
p
c
b
a
r
r
i
e
r
e
x
p
r
e
s
s
i
o
n

Im
p
li
ci

t
A

b
lo

ck
in

g
sy

n
ch

ro
n
iz

a
ti

o
n
,
si

m
il
a
r

to
M
P
I
B
a
r
r
i
e
r

o
n

M
P

I

S
p
li
t

p
h
a
se

b
a
rr

ie
rs

u
p
c
n
o
t
i
f
y
e
x
p
r
e
s
s
i
o
n

u
p
c
w
a
i
t
e
x
p
r
e
s
s
i
o
n

Im
p
li
ci

t
A

n
o
n
-b

lo
ck

in
g

sy
n
ch

ro
n
iz

a
ti

o
n

F
en

ce
u
p
c
f
e
n
c
e

Im
p
li
ci

t
E

n
su

re
th

a
t

a
ll

sh
a
re

d
re

fe
re

n
ce

s
is

co
m

p
le

te
d

b
ef

o
re

u
p
c
f
e
n
c
e

L
o
ck

s
u
p
c
l
o
c
k
(
)

u
p
c
u
n
l
o
c
k
(
)

E
x
p
li
ci

t
P

ro
te

ct
th

e
sh

a
re

d
d
a
ta

a
g
a
in

st
m

u
lt

ip
le

p
ro

ce
ss

o
rs

M
em

o
ry

co
n
si

st
en

cy
co

n
tr

o
l

#
i
n
c
l
u
d
e
<
u
p
c
s
t
r
i
c
t
.
h
>

#
i
n
c
l
u
d
e
<
u
p
c
r
e
l
a
x
e
d
.
h
>

E
x
p
li
ci

t

T
h
er

e
a
re

tw
o

m
em

o
ry

co
n
si

st
en

cy
m

o
d
el

s:

1
.

R
el

a
xe

d
S
h
a
re

d
d
a
ta

ca
n

b
e

re
o
rd

er
ed

d
u
ri

n
g

co
m

p
il
e

ti
m

e
o
r

ru
n
ti

m
e

2
.

S
tr

ic
t

A
cc

es
se

s
to

sh
a
re

d
d
a
ta

is
se

ri
a
li
ze

d

274 H. Kasim et al.

introduces the concept of thread affinity. With this feature, UPC optimizes
memory-access performance between a thread and the per-thread address space
where the thread has been bound.

In UPC, workload management is implicit, while workload partitioning and
worker mapping can be either implicit or explicit. For worker management, pro-
grammers just need to specify number of threads required during the call on the
command-line tools, upcrun. Implicit workload partitioning and task mapping
are supported through an API called upc forall which is similar to for iteration
in C programming, except that the content of the iteration will be run in paral-
lel. When this API is used, there is no need for additional programming effort
for programmers to map the task to threads. The explicit approach in UPC for
workload partitioning and worker mapping is similar to the one in MPI, where
programmers have to specify on what will be run by each threads.

In UPC, communication among threads adopt the Partitioned Global Address
Space (PGAS) paradigm by making use of pointers. There are three types of
pointer commonly used in UPC [10]: (i) private pointer where the private point-
ers point to their own private address space, (ii) private pointer-to-share where
the private pointers point to the shared address space, and (iii) shared pointer-
to-share where the shared pointers from one address space point to the other
shared address space.

UPC provides several synchronization mechanisms [9]. Table 3 briefly de-
scribes the synchronization mechanisms available in UPC together with the pro-
gramming effort require by programmers.

3.6 Fortress

Fortress is a specification programming language designed for High Performance
Computing [11]. The unit of worker is threads. Worker management, workload
partitioning and worker mapping in Fortress can be implicit or explicit. In the
implicitly approach, the iterative for loops is parallel by default. Programmer
does not have to specify which threads to be run on each iteration. In the explicit
approach, the creation of a thread can be done by using spawn keyword. As an ex-
ample, in t = spawn Global Function(Arguments), t denotes the thread cre-
ated, and Global Function denotes the tasks to be run by t. Note that apart
from a global function call, a task can be an expression as well. Stopping thread
t is achieved through t.stop(). The workload partitioning and worker mapping
for explicitly spawned threads are similar with in CUDA. One needs to decide how
a workload is partitioned into tasks and how tasks are assigned to threads.

To avoid abnormal behavior and data races in one program, programmers have
to specify the synchronization constructs explicitly. There are two synchroniza-
tion constructs called reductions and atomic expression. The use of reduction
is to avoid the need for synchronization by performing a computation as local
as possible. Second construct, atomic can be used to control the data among
the parallel executions. Atomic expression consists of atomic keyword follow by
body expression. In body expression, all data reads and writes will appear to
occur simultaneously in a single atomic step [11].

Survey on Parallel Programming Model 275

4 Summary

Using seven criteria, we have reviewed the qualitative aspects of six represen-
tative parallel programming models. Our goal is to provide a basic guideline in
evaluating the appropriateness of a programming model in various development
environments. The system-architecture aspect indicates the type of computing
infrastructure (e.g. single node versus a cluster) supported by each of the pro-
gramming models. The remaining aspects, which complement the typical perfor-
mance evaluation, are meant to aid users in evaluating the ease-of-use of models.
It should be noted that the seven criteria are by no means exhaustive. Other
implementation issues such as debugging support should be considered as well
when evaluating a parallel programming models.

References

1. Kish, L.B.: End of Mooreś Law: Thermal (noise) Death of Integration in Micro
and nano electronics. Physics Letters A 305, 144–149 (2002)

2. Kish, L.B.: Mooreś Law and the Energy Requirement of Computing Versus per-
formance. Circuits, devices and systems 151(2), 190–194 (2004)

3. Sun Studio 12, http://developers.sun.com/sunstudio
4. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,

K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
Landscape of Parallel Computing Research: a view from Berkeley. Technical Report
UCB/EECS-2006-183, Electrical Engineering and Computer Sciences, University
of California at Berkeley (December 2006)

5. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley, Reading
(1997)

6. OpenMP, http://www.openmp.org
7. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory

Parallel Programming. MIT Press, Cambridge (2007)
8. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann, San Francisco

(1996)
9. Consortium, U.: UPC Language Specifications, v1.2. Technical report (2005)

10. Husbands, P., Iancu, C., Yelick, K.: A Performance Analysis of the Berkeley UPC
Compiler. In: ICS 2003: Proceedings of the 17th annual international conference
on Supercomputing, pp. 63–73. ACM, New York (2003)

11. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.W., Ryu, S., Steele Jr.,
G.L., Tobin-Hochstadt, S.: The Fortress Language Specification Version 1.0 beta.
Technical report (March 2007)

12. Corporation, N.: NVIDIA CUDA Programming Guide, version 1.1. Technical re-
port (November 2007)

13. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Comput-
ing, 2nd edn. Addison-Wesley, Boston (2003)

14. OpenMPI, http://www.open-mpi.org
15. MVAPICH, http://mvapich.cse.ohio-state.edu
16. MPICH, http://www.mcs.anl.gov/research/projects/mpich2
17. GRIDMPI, http://www.gridmpi.org
18. LAM/MPI, http://www.lam-mpi.org

http://developers.sun.com/sunstudio
http://www.openmp.org
http://www.open-mpi.org
http://mvapich.cse.ohio-state.edu
http://www.mcs.anl.gov/research/projects/mpich2
http://www.gridmpi.org
http://www.lam-mpi.org

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 276–285, 2008.
© IFIP International Federation for Information Processing 2008

An Integrated Framework for Wireless Sensor Web
Service and Its Performance Analysis Based on Queue

Theory*

Luqun Li**

Department of Computer Science of Shanghai Normal University, 100 Guilin Road,
Shanghai, China 200233

liluqun@gmail.com

Abstract. Wireless sensor networks (WSNs) have unlimited and extensive po-
tential application in different areas. Right now, how to integrate WSNs into the
web service or grid computing framework is becoming an issue in related re-
search areas. In this paper, we proposed an integrated web service framework
for WSNs, and built mobile device hosted web service, moreover we built its
corresponding queueing model and gave it performance analysis. Analysis and
simulation show that our framework is practical in QoS guaranteed messages
transmitting with different priority.

Keywords: web service; wireless sensor networks;QoS; queue theory;Little’s Law.

1 Introduction

Right now, wireless sensor networks (WSNs) are currently receiving significant re-
search attention both in theory and application, due to their unlimited and extensive
potential application in different areas[1]. WSNs serve as a role that bridges the gap
between the physical and logical worlds, by gathering certain useful information from
the physical world and transmitting that information to more powerful logical devices
that can process it[2]. Each node in WSNs has its unique computing ability in its
specific working area, moreover it may own wireless network connection with
WLAN or Internet. It can act as a computing nodes in network based computing, such
as grid computing and web service computing[1].This seems to be one of the phe-
nomena in Pervasive Computing era[1, 3, 4]. While as for the limited computing
ability, storage, battery energy and wireless band width of WSNs, how to efficiently
and QoS grantee integrate WSNs with the architecture of current web service or grid
service[5, 6]has become an issue in web service integration application. In this paper,
firstly, we analysis related research works on this issue then put forward an integrated
framework for wireless sensor web service, then we build the differential service
queueing model of this framework and give its performance analysis and numeral

* This work was supported in part by the Shanghai Education Bureau Grant CL200652,

SK200709 and PL531.
** His main research interests are computer networks, wireless communication and swarm

intelligence.

 An Integrated Framework for Wireless Sensor Web Service 277

results. Finally, based on the results of performance analysis and numeral result, we
give some optimization parameter selection in this framework.

2 Related Work and Challenges

In recent years, there has been a growing interest in sensor data collection and
management, with the main focus on integrates WSNs with the current web service
architecture framework. Till now, there are many research works on some specific
application. These studies[1-11] provide effective techniques for sensor databases and
query systems, but their main limitation is the problem scale, being within a single
sensor network, besides studies above only give designs of the framework, most of
studies did not provide their corresponding mathematics model and performance
analysis. Another import fact is in real WSNs, there may exist many different classes
users, for example the administrators or common users, different classes users need
differential service such as the latency of service. Due to these issues we think the
following challenges need to be addressed:

• The framework of integrate WSNs with current web service;
• The mathematics model of the framework;
• How to evaluate the performance of the framework.

To address these key challenges, we have designed the corresponding framework
and mathematics model.

3 Proposed Framework

Web service has become an integral part of many web applications in nowadays.
Platform-independent, ubiquitous and easy access web services using common stan-
dardized protocol SOAP, WSDL, UDDI, have been one of the principal drivers be-
hind this success.

In WSNs, it is impossible for all nodes to be connected with wired network or
Internet, usually only the sink nodes in WSNs which have high battery energy will
connect with wired network or Internet (See Fig.1).

Fig. 1. WSNs Connected With Wired Network

278 L. Li

Different from the wired web service provider, web service based on wireless sen-
sor nodes (such as Mica2, Ziggbee etc) which only own constraint computing re-
sources and battery, and very narrow band of wireless network. Moreover, to save the
battery, if there is no request for sensor data; nodes in WSNs are usually in battery
saving state. Besides these issues, XML and SOAP are not efficient protocol for
WSNs nodes to transmit messages, while raw binary code related protocols are still
dominated protocols for these devices. Concern on the unique characteristics of
WSNs and the standard web service architecture, we prompted the following inte-
grated web service framework for WSNs framework for mobile device hosted web
service (See Fig.2).

Fig. 2. Integrated Web Service Framework for WSNs

We use the following abbreviation to denote each role in the framework above:

SG : denotes Service Registry; SR : denotes Service Requester;
WSM : denotes WSNs service Mapper;
WSNd : denotes the sink node in WSNs;
WCS : denotes WSNs Cache Service.
In this framework, we can see that Service Registry (SG)and Service Requester

(SR) are still the traditional roles in web service model. Different from the standard
web service model, we introduce a new role which is WSNs service Mapper
(WSM).WSM acts as a hybrid role.

From the Service Requester viewpoint, WSM is a standard web service provider,
roles on the left side of the framework communicate with each other by SOAP or
XML protocol. Though most nodes in WSNs have wireless network connection, they
may not own valid IP address; they can not directly provide service just like a server
in internet. WSM seems to be one of the most practical approach to solve the prob-
lem, it is like a gateway to bridge WSNs and wired network, so WSM is an essential
role in this framework.

In our framework above, on the right side, WSM acts as a web service consumer,
it can also be taken as a wrapper for sink node in WSNs hosted web service, WSM is
usually hosted on a wired computer, it accepts the web service request by standard

 An Integrated Framework for Wireless Sensor Web Service 279

web service protocol, it requests web service from sink node of WSNs by any proto-
cols, we denote it byWSNd .

Because each WSN may need to be managed, the user of WSNs may be classified
into different privilege levels, to make the problem simple, the users are classified
into two classes, or the administrators and the common users. Usually the administra-
tors send control packet to sink nodes of WSNs to regulate the states of WSNs, the
common user only request for the data fromWSNd .

Besides, to enhance the throughput of the system and save the battery energy

ofWSNd，we also introduce a web service cache system WSC to reduce unneces-
sary repeated request toWSNd .

As for, in this paper we only focus on the framework and its performance analy-
sis, we will not go any further in program coding, you can see the details in program
code implementation of our system in [1].

3 Queueing Model for the Framework

To analysis the performance of the integrated web service in Fig.2, we build the fol-
lowing queueing mode (See Fig.3)

Fig. 3. Queue Model for the Framework

Actually, there are two queues in the queueing model above, and they are:

• Queue.1 The first queue is forWSC , the cache system is only for WSNs data
packet, WSNs cache system is usually a data search operation, and we use M/D/1
for this queueing model. Web service request messages come to WSC queue at

the rate of d tPλ ⋅ , where dλ is the rate of data request messages, tP is probabil-

ity of getting data from cache service WSC .

• Queue.2 This queue is forWSNd . This queue is work for both WSNs control

and data packet request, as for the service time of WSNd is usually with general
distribution and it may be in the state of energy saving (in vacations states), we
use M/G/1 non-preemptive priority with vacations for this queueing model.

280 L. Li

All WSNd web service request message are firstly sent to WSM . WSM will
check the message type and the time stamp to determine which queue the request
should be forward to process.

In this model, we assume web service request message types are classified in to n

priority classes. Messages of each priority class (1,2,)i i n= K arrive according to a

Poisson process with rate iλ and to be served by WSNd with a general service time

distribution of mean ix and second moment 2
ix .

To make the problem simple, we assume there are two priority classes in our
model, the first one is control message, which is usually the control message sent by

the administrators or some urgent message request, it comes with the rate of cλ ; the

second one is data message, it comes with the rate of (1)e d tPλ λ= ⋅ − . The arrival

cλ and dλ are assumed to be independent of each other and service process. Note

that the rate of all messages comes at c dλ λ λ= + .

cλ is to be served by WSNd with a general service time distribution of mean cx

and second moment 2
cx .

eλ is to be served by WSNd with a general service time distribution of mean ex

and second moment 2
ex .

Another import thing to be noted is WSNd may be in energy saving state or so-

called a “vacation”. In this state WSNd does not process any requests. Assume that

1 2, ,v v K are the residual ofWSNd ’s successive vacation time. The mean of vaca-

tion time 1 2, ,v v K isV , and the second moment is 2V .

Then we can summary the parameters and their relationships by the followings:

cλ : denotes the rate of control messages toWSNd ;

eλ : denotes the rate of data messages to WSNd

tP : denotes the probability of data message toWSC

cρ : is called the traffic intensity or utilization factor for control message to process;

eρ : is called the traffic intensity or utilization factor for data message to process;

ρ : denotes the traffic intensity of the system;

cµ : denotes the service rate to process control messages;

eµ : denotes the service rate of to process data messages;

x : denotes the average service time of the system;
2x : denotes the second moment of the system;

 An Integrated Framework for Wireless Sensor Web Service 281

V :denotes the mean of vacation time 1 2, ,v v K；

2V : denotes the second moment of 1 2, ,v v K .

We can deduce the relationship among these parameters above in the followings:

c d c d t ePλ λ λ λ λ λ= + = + ⋅ + , (1)e d tPλ λ= ⋅ − ;

c c cxρ λ= ⋅ , e e exρ λ= ⋅ , c e

λρ ρ ρ
µ

= = + ;

c e
c ex x x

λ λ
λ λ

= ⋅ + ⋅ , 2 2 2c e
c ex x x

λ λ
λ λ

= ⋅ + ⋅

4 Analysis on the Queueing Model

As for Queue.1 above is a / /1M D queueing system, this queue is rather easy, we
will not go any further. Now, we will focus on Queue.2.

First, we analysis the residual service time R for all the messages in the system. By
Fig.4 we can get that R equals the mean service time of all message with different
priority plus the mean service in vocation time (WSNd is in power saving state), we
can simple denote it by:

K is the message with higher
priority than j in the queue before j

Fig. 4. Residual Service Time for All Mes-
sages

Fig. 5. Messages in Queue.2

R ServiceTime ServiceInVacationTime= + ;

where,
2

2

1 1

1

22

n n
k

k k k
k kk

x
ServiceTime x

x
ρ λ

= =

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ,

2

2

V
ServiceInVacationTime

V
=

⋅

Where, ServiceTime is the system mean service time, ServiceInVacationTime
is the mean time that WSNd is in power saving state; and j is current message that

282 L. Li

just is in queue, k is the message with higher priority than j in the queue

before j (See Fig.5).

From analysis above, we can directly use the conclusions in / /1M G [12], and
arrive at the waiting time of each message with different priority :

1 2 1 1 2(1)(1 1)i
i i

R
W

ρ ρ ρ ρ ρ ρ−

=
− − − − − − − − −K K

 (1)

where iW is the waiting time of message to WSNd with priority i ,and iρ is the

traffic intensity or utilization factor for message to WSNd with priority i .
Then from equation (1), according to Little’s Law in queue theory, we can get the

average number of messages iN with the same priority i in their waiting queue:

1 2 1 1 2(1)(1 1)
i

i i i
i i

R
N W

λλ
ρ ρ ρ ρ ρ ρ−

⋅= ⋅ =
− − − − − − − − −K K

 (2)

The total time iT for each message with priority i spent in Queue.2 is:

1 2 1 1 2(1)(1 1)i i i i
i i

R
T W x x

ρ ρ ρ ρ ρ ρ−

= + = +
− − − − − − − − −K K

 (3)

The total number of all messages N in Queue.2 is:

1 1 1 2 1 1 2(1)(1 1)

n n
k

k
k k k k

R
N N

λρ ρ
ρ ρ ρ ρ ρ ρ= = −

⎛ ⎞⋅= + = +⎜ ⎟− − − − − − − − −⎝ ⎠
∑ ∑

K K
 (4)

In summary, we can evaluate the performance of our framework by iW , iN and iT .

5 Numeral Results and Analysis

To analysis the results that we have deduced above, we give the following initial
parameters in the framework:

• The mean data message process time 0.02dx = , with variance 2 0.05
d

σ = and

the second moment ()2
2 2
d d dx x σ= + ;

• The mean control data message process time 0.002cx = , with vari-

ance 2 0.02
c

σ = and the second moment ()2
2 2
c c cx x σ= + ;

• The mean control data message process time 0.06V = , with vari-

ance 2 0.01
v

σ = and the second moment ()2
2 2

vV V σ= + ;to increase the

 An Integrated Framework for Wireless Sensor Web Service 283

efficiency of system, we change the ()()2
2 2 /vV V σ λ= + , it means intelligent

in power saving state;

• 0.1tP = ;

According equation (1)(2)(3)(4), by increase the value of λ ,we will also get in-
creased traffic intensity of the system ρ ,the we can get the queue size and wait time

of each message with different priority, see Fig.6 and Fig.7.

Fig. 6. Queue size of Nc and dN with ρ Fig. 7. Wait time of Wc and dW with ρ

Fig.6 shows that with the increasing of ρ , cN will also increase, but the queue size

will be below than 9; while dN will increase very fast, and the queue size nearly

4300;

Fig.7 shows that with the increasing of ρ , cW will also increase, but the wait time

will be below than 1.4 second; while dW will increase very fast, and the wait time

will below 84 second;
We can see that latency of the control message to be processed will be guaranteed.

Fig. 8. Queueing Model M/G/1 with Vacation without Priority

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

2

4

6

8

10

 Nc: Control Messages in Queue.2
 Nd: Data Messages in Queue.2

 Traffic Intensity of The System

N
c

(in
 n

um
be

r)

0

1000

2000

3000

4000

5000

N
d (in num

ber)

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 Traffic Intensity of The System

Wc:The Wait time of Control Message
 Wd:The Wait time of Data Message

W
c

 (
un

it:
se

co
nd

s)

0

20

40

60

80

100

W
d (unit:seconds)

284 L. Li

To compare the framework we proposed in Fig.3 with the traditional queueing
model M/G/1 with vacation without priority in Fig.8, we run the simulation with the
same initial parameters above, then we get Fig.9 and Fig.10.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

50000

100000

150000

200000

250000

300000

N
c

ρ: The Traffice Intensity of The System

 Nc:Control Messages in Queue in M/G/1 with No-preemptive Priority

 NdData Messages in Queue in M/G/1 with No-preemptive Priority

 NN Message in Queue in M/G/1 without Priority

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

50000

100000

150000

200000

250000

300000

0.0 0.2 0.4 0.6 0.8 1.0

0

1000

2000

3000

4000

5000

ρ: The Traffic Intensity of The System

 Wc: Control Messages Wait time in M/G/1 No-preemptive Priority

 Wd: Control Messages Wait time in M/G/1 No-preemptive Priority

 W: Messages Wait time in M/G/1 without Priority

0

1000

2000

3000

4000

5000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9. Queue size in different model with ρ Fig. 10. Wait time in different model with ρ

Fig.9 shows that in our framework in Fig.3 with the increasing of ρ , cN will also

increase, but the queue size will be below than 9; while dN will increase very fast,

and the queue size nearly 4300; in the traditional model in Fig.8, the queue size will
increase very fast, and the queue size is very large;

Fig.10 shows that with the increasing of ρ , cW will also increase, but the wait time

will be below than 1.4 second; while dW will increase very fast, and the wait time

will below 84 second; in the traditional model in Fig.8, the wait time size will in-
crease to 4800;

With the queueing model in Fig.3 and WSNd is intelligent in power saving state,
we can make a conclusion that the performance of the framework we proposed is
much better than the traditional queueing model in Fig.8

6 Conclusions

In this paper, we introduced an integrated framework for wireless sensor web service,
then, based on queue theory, we give its performance analysis. Analysis and simula-
tion show that our framework is QoS guaranteed for different messages with different
priority, and the performance of our is much better than the traditional queueing
model in Fig.8.

References

[1] Li, L., Li, M.: The Study on Mobile Web Service Computing for Data Collecting. In:
2004 International Conference on Communications, Circuits and Systems, vol. II, pp.
1497–1501. IEEE, Los Alamitos (2004)

 An Integrated Framework for Wireless Sensor Web Service 285

[2] Yu, Y., Rittle, L.J.: Supporting Concurrent Applications in Wireless Sensor Networks. In:
SenSys 2006, Boulder, Colorado, USA, November 1-3, 2006, pp. 139–152 (2006)

[3] Whitehouse, K., Zhao, F., Liu, J.: Semantic streams: A framework for composable se-
mantic interpretation of sensor data. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN
2006. LNCS, vol. 3868. Springer, Heidelberg (2006)

[4] Zhu, F., Mutka, M.W., Ni, L.M.: Service discovery in pervasive computing environments.
Pervasive Computing 4(4), 81–90 (2005)

[5] Delicato, F.C., et al.: A flexible web service based architecture for wireless sensor net-
works. In: Proceedings of 23rd International Conference on Distributed Computing Sys-
tems Workshops, 2003, pp. 730–735 (2003)

[6] Gaynor, M., Moulton, S.L., Welsh, M.: Integrating Wireless Sensor Networks with the
Grid (2004)

[7] Cardell-Oliver, R., et al.: Field Testing a Wireless Sensor Network for Reactive Envi-
ronmental Monitoring. In: Proceedings of the International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (2004)

[8] Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley,
Chichester (2005)

[9] Peng, R., Hua, K.A., Hamza-Lup, G.L.: A Web services environment for Internet-scale
sensor computing. In: 2004 IEEE International Conference on Services Computing (SCC
2004) Proceedings, pp. 101–108 (2004)

[10] Shi, J., Liu, W.: A service-oriented model for wireless sensor networks with Internet. In:
The Fifth International Conference on Computer and Information Technology, 2005. CIT
2005, pp. 1045–1049 (2005)

[11] Woo, A., et al.: A spreadsheet approach to programming and managing sensor networks.
In: Proceedings of the fifth international conference on Information processing in sensor
networks, pp. 424–431 (2006)

[12] Hock, N.C.: Queueing Modelling Fundamentals. John Wiley & Sons, Chichester (1997)
[13] Broll, G., et al.: Supporting Mobile Service Usage through Physical Mobile Interaction.

In: Fifth Annual IEEE International Conference on Pervasive Computing and Communi-
cation (PerCom 2007), White Plains, NY, USA (2007)

[14] Dorn, C., Dustdar, S.: Sharing hierarchical context for mobile web services. Distributed
and Parallel Databases 21(1), 85–111 (2007)

[15] Phan, K.A., Tari, P., Bertok, P.: A benchmark on soap’s transport protocols performance for
mobile applications. In: Proceedings of the 2006 ACM symposium on Applied computing
2006 (SESSION: Mobile computing and applications (MCA)), pp. 1139–1144 (2006)

[16] Oh, S., Fox, G.C.: Optimizing Web Service messaging performance in mobile computing.
Future Generation Computer Systems 23(4), 623–632 (2007)

[17] Park, Y.H.: Method for supplying a mobile web service by transceiving XML data based
an soap and a system therefo, Pantech Co Ltd

[18] Sakkopoulos, E., Lytras, M., Tsakalidis, A.: Adaptive mobile web services facilitate
communication and learning Internet technologies. IEEE Transactions on Educa-
tion 49(2), 208–215 (2006)

[19] Oh, S., Fox, P.C.: Optimizing Web Service messaging performance in mobile computing
Future Generation Computer Systems, May 2007, vol. 23(4) (2007)

[20] Srirama, S.N., Jarke, M., Prinz, W.: Mobile Web Service Provisioning. In: Proceedings of
the Advanced Int’l Conference on Telecommunications and Int’l Conference on Internet
and Web Applications and Services (February 2006)

[21] Srirama, S.N., Jarke, P., Prinz, P.: A Mediation Framework for Mobile Web Service Pro-
visioning. In: Proceedings of the 10th IEEE on International Enterprise Distributed Ob-
ject Computing Conference Workshops, October 2006, p. 14 (2006) (0-7695-2743-4)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 286–296, 2008.
© IFIP International Federation for Information Processing 2008

Grid Computing: A Case Study in Hybrid GMRES
Method

Ye Zhang, Guy Bergere, and Serge Petiton

Laboratoire d’Informatique Fondamentale de Lille, USTL
59650 Villeneuve D’Ascq, France

{Ye.Zhang,Guy.Bergere,Serge.Petiton}@lifl.fr

Abstract. Grid computing in general is a special type of parallel computing. It
intends to deliver high-performance computing over distributed platforms for
computation and data-intensive applications by making use of a very large
amount of resources. The GMRES method is used widely to solve the large
sparse linear systems. In this paper, we present an effective parallel hybrid
asynchronous method, which combines the typical parallel GMRES method
with the Least Square method that needs some eigenvalues obtained from a par-
allel Arnoldi process. And we apply it on a Grid Computing platform Grid5000.
From the numeric results, we will present that this hybrid method has some ad-
vantage for some real or complex systems compared to the general method
GMRES.

Keywords: Grid, hybrid, GMRES, complex.

1 Introduction

Iterative methods are a common choice for solving the large linear sparse system of
the form Ax=b. A popular class of iterative methods is Krylov subspace methods. The
generalized minimum residual algorithm (GMRES) [2] is used widely and it is often
referred to as an “optimal” method because it finds the approximate solution in the
Krylov subspace that minimaized the 2-norm of the residual. In order to limit both
computation and memory requirements, a restarted version is often used. It has been
implemented on parallel systems [1], but this method does not always converge very
fast. There are some existing modifications to the standard GMRES algorithm. We
study a hybrid method [9] which calculates in parallel some eigenvalues by the Ar-
noldi method [3], [4]. As soon as they are approximated with a sufficient accuracy,
the eigenvalues are used to perform some iterations of the Least Squares method [6]
for getting a new initial vector for the next GMRES restarts. We have applied it on the
supercomputer to solve some small real linear system [9], [15].

We perform our experiments on a Grid system. As known to all, the Grid is well
established as a research domain and proposes technologies that are mature enough to
be used for real-life applications. It is dedicated to achieve a high performance of
large scale computing by using a large amount of unoccupied computing resources.

 Grid Computing: A Case Study in Hybrid GMRES Method 287

The Grid5000 project has been launched to provide the community of Grid re-
searchers with an unprecedented large-scale infrastructure to study Grid issues under
real experimental conditions. Grid’5000 is a large scale computing tool composed of
many clusters distributed in several computing centers in France.

In this paper, we present the distributed hybrid method GMRES(m)/LS-Arnoldi
which is well implemented on the GRID system Grid’5000. And we try to apply it on
the large linear systems and the complex systems.

This paper is organized as follows. The numerical methods used in our hybrid
method will be present in section 2. In section 3, we introduce the implementation on
Grid’5000. In section 4, we present the results obtained on the platform Grid’5000. At
the same time we sum up the advantages and characteristic and see the effect on com-
plex problem. Finally, in section 5, we present a summary and discuss directions for
future research.

2 GMRES(m)/LS-Arnoldi Hybrid Parallel Method

This method aims to accelerate the convergence with the benefit of Arnoldi and Least
Square methods. Arnoldi method uses the Gram-Schmidt method to compute the
orthonormal basis of the Krylov subspace. It is well-known for approximating
eigenvalues of large sparse matrices. Least Square is a polynomial iteration method
that can offers us a new initial vector by using the eigenvalues information.

The idea is that during the GMRES iterations, if we can offer more information
about the matrix, the efficiency of convergence can be increased. So we use Least
Square method to obtain the new initial vector for the next GMRES iterations. And
the Arnoldi process is performed in parallel to calculate some eigenvalues with a
sufficient accuracy for the Least Square computation.

2.1 GMRES Method

GMRES (Generalized Minimum RESidual) method is one of the iterative methods
based on Krylov subspace. Such methods find an approximate solu-

tion)r,A(Kxx 0i0i +∈ , where }rA,...,Ar,r{span)r,A(K 0
1i

000i
−≡ denotes an i-

demensional Krylov subspace, 0x is the initial guess, and 0r is the initial residual.

The GMRES method was proposed by Saad and Schultz[2] in 1986. It is used

widely to solve non-symmetric linear systems. The thm iterate mx of GMRES is the

solution of the least squares problem: 2)r,A(Kxx ||Axb||minimize
0m0

−+∈ , where

00 Axbr −= is the residual of the initial solution. The Arnoldi process applied

to)r,A(K 0m builds]v,V[V 1mm1m ++ = , an orthonormal basis of)r,A(K 0m , the m+1 by

m matrix mH and
20r=β . These matrices satisfy the relation m1mm HVAV += . The

iterate mx can be written as mm0m yVxx += , where m
my ℜ∈ is the solution of the least

squares problem:
2m1y

yHeminimize m −
ℜ∈

β .

288 Y. Zhang, G. Bergere, and S. Petiton

In the GMRES algorithm the number of vectors requiring storage increases with m.
In order to limit both computation and memory requirements, a restarted version is
often used.

In the algorithm, 0x denotes an initial guess of the solution, m denotes the size of

Krylov subspaces, and ε denotes the tolerance.

Algorithm restarted GMRES(m):
1. Initialization
2. 00 Axbr −=

3. Apply Arnoldi process to)r,A(K 0m

4. 2m1
y

m ||yHe||minargy
m

−=
ℜ∈

β

 mmmm0m Axbr ,yVxx −=+=

5. if ε≤2m ||r|| then stop
 else

 m0m0 rr ,xx ==
 goto step3

 end if

2.2 The Hybrid Algorithm GMRES(m)/LS(k,l)

The whole process is that we calculate in parallel some eigenvalues by the Arnoldi
method [5]. As they will be approximated with a sufficient accuracy, eigenvalues are
used to perform some iterations of the Least Squares method [6] in order to obtain a
new initial vector for the next GMRES iterations.

The hybrid algorithm GMRES(m)/LS(k,l) can be given as follows. There are some
important parameters, m′ denotes the size of Krylov subspace for Arnoldi method, k
denotes the degree of the least squares polynomial, and l denotes the number of the
successive applications of the Least Squares method.

Algorithm: GMRES(m)/LS(l,k)
1. Initialization

2. Compute mx , the thm iterate of GMRES starting with 0x

 if ε<− 2m ||Axb|| then Stop
 else

 0x = mx , 00 Axbr −=
 end if
2’. Perform m′ iterations of the Arnoldi process start-

ing with 0r , to)v,A(Km′ , and compute the eigenvalues of

mH ′

2’’. Compute the least squares polynomial kP on the
boundary of H, the hull convex enclosing all computed ei-
genvalues.

 Grid Computing: A Case Study in Hybrid GMRES Method 289

3. Do l,,1j L=

 0k0 r)A(Pxx~ +=

 x~x0 = , 00 Axbr −=
 end do
4. if ε<20 ||r|| then Stop
 else goto step 2
 end if

In the algorithm, step 2’ and 2’’ means that these two steps are performed independ-
ently of the GMRES iterations, and the step 2’’ is performed following the step 2’.

Step 2’ is the Arnoldi process. At first we apply Arnoldi process to the krylov sub-
spaces of Arnldi)v,A(Km . Then we calculate the eigenvalues(di1 ,i ≤≤λ) and the

associate eigenvectors (di1 ,yi ≤≤) of mH . After that we compute the Ritz vectors

imi yVu = , for i=1, ···, d. Set ∑ == d
1i i)uRe(v , and repeat the process above until

ερ <
= i

d

1i
max , where

2iiii Auu −= λρ , di1 ≤≤ .

Step 2’’ is the sequential part of Least Square method. For the Least Square
method, it can be written as follows: 0k0 r)A(Pxx~ += where 0x an initial approxima-

tion, 0r its residual, and kP is a polynomial of degree k-1. Let 1
kΡ be the set of the real

polynomials p of degree k, such that p(0)=1, and define the polynomial 1
kk PR ∈ by

)z(zP1)z(R kk −= . Then the residual of the iterate x~ is 0k r)A(Rr~ = .

In general, we do not have the whole spectrum of A, but only some eigenvalue es-
timates contained in a convex hull H because all eigenvalue calculation will spend a
very long time. H is constructed such as it does not contain the origin. Smolarski and
Saylor [11] proposed to find kR minimizing a weighted L2-norm on the space of real

polynomials, with a suitable weight function w, defined on the boundary of H. We
obtain the following least squares problem

wk
PR

Rmin
1
kk ∈

.

The obtained polynomial ∑
−

=
=

1k

0i
iik tP η is expressed in the scaled and shifted Cheby-

shev basis defined by ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −=

d

a
T/

d

c
T)(t jjj

λλ j=0,1,… This is the best basis of

polynomials on the ellipse)a,d,c(ε of smallest area enclosing H (see [10] and [5] for

an algorithm computing this optimal ellipse). For more details, see [6].

2.3 The Hybrid Method for Complex Problem

In fact, we realize the solution by the prior treatment for the complex matrix. The
complex problem bi)(br)XiXr()AiAr(+=+×+ can be split into real part and

image part:
br XiAiXrAr =×−×
bi XrAi XiAr =×+×

290 Y. Zhang, G. Bergere, and S. Petiton

So we extend the complex matrix (size N*N) into a real counterpart (size 2N*2N) [7].

Ar -Ai Xr br

Ai Ar
×

Xi
=

bi

A’ X’ b’

We apply the hybrid method to this new system 'b'X'A =× .

3 Implementation on GRID System

Grid’5000 is a Nation Wide Grid environment that is composed of many clusters
distributed in 9 computing centers in France. A fast dedicated network interconnects
those clusters. It is a highly configurable, controllable and monitorable instrument that
can be configured to work as a real Grid. We implement our experiments on Grid5000
because it isolates the perturbations from outside, par example the communication
over the Internet and the load of the computing devices. We can devote ourselves to
research the algorithm itself and it would help us improve our analysis of more tests
on the worldwide platforms in future.

The Grid5000 usage is based on a reservation policy and a deployment mechanism
allowing people configuring their own environment. Details can be found on the
Grid5000 website [16]. We distribute our application on one or several sites of
Grid5000 with the environment MPI.

We reserve most processors to run the algorithm GMRES(m) by the way of the
SPMD model, where one act as an administrative process and the other p identical
calculation processes play the role of workers. The calculation processors read di-
rectly their own data and execute the method GMRES(m), communicating with their
brother processes.

The processors dedicated to the parallel package “PARPACK” are in charge of the
residuals reception, the Arnoldi projection and the eigenvalues calculation, perform-
ing independently of the processes GMRES.

Only one processor is in charge of the sequential part because of the small set of
data for calculation. The parameters “Least Square” obtained are then sent to the
processors executing the parallel part of LS method and algorithm GMRES(m) .

The whole process and the relationship of the communication between the three
parts are presented in Fig. 1.

There are two threads for the whole calculation. The first is the GMRES iteration
or Least Square iteration. After each iteration, the GMRES(m) process always checks
if the LS parameters arrive. In this case, the GMRES algorithm is then suspend, and
the processes perform the parallel part of the LS hybridizations. Then GMRES(m)
restart with the obtained initial vector.

Another thread is the eigenvalues calculation by Arnoldi method and the coeffi-
cients computation by sequential part of Least Square method. These two processes
are performed in serial.

 Grid Computing: A Case Study in Hybrid GMRES Method 291

LSP

Fig. 1. General scheme of asynchronous hybrid GMRES/LS-Arnoldi process

All the processors are interconnected inter-cluster or intra-cluster. Intra-cluster
means that the algorithm is performed in one cluster. In other word, the GMRES
iteration, the Arnoldi process and LS method are distributed in the nodes of the same
cluster. Inter-cluster means that these three components are distributed in different
clusters, and each component can be assigned completely in one cluster or be distrib-
uted in different clusters.

4 Numeric Results and Analysis

Table 1 shows the excellent network configuration of our experimental platform. The
detailed information can be referred to the web site of Grid’5000 [16].

292 Y. Zhang, G. Bergere, and S. Petiton

Table 1. Bandwidth and average latency between the clusters of the sites

 Bandwidth Latency
Inter-Cluster

Orsay 48.4MB/s 0.11ms
nancy 42.8MB/s 0.09ms

Bordeaux 53.7MB/s 0.086ms

Intra-Cluster
Orsay – nancy 9.7MB/s 5.7ms

Orsay – Bordeaux 8.1MB/s 7.9ms
Nancy – Bordeaux 4.0MB/s 17ms

All the sparse matrices are stocked in the compressed format CSR (Compress

Sparse Row) for saving the memory and reducing the communication on the network.
Moreover, in order to be able to verify the results accuracy, we have chosen in all
examples the right-hand side so that the solution of the system is x = (1,1,...,1)T . The

iteration starts with x0 = (0,0,...,0)T .
First example (af23560): We experiment some industrial matrices from the site

MatrixMarket. In this paper, we present the results obtained with the matrix af23560
(size 23560*23560, 484256 nonzero elements)

Second example: are created by a generator and are block diagonal matrices. (size
17000*17000, 426260 nonzero elements)

Third example: symmetric complex matrix young1c (size 841*841, 4089 nonzero
elements). It is from the site MatrixMarket.

Forth example: symmetric complex matrix dwg961b (size 961*961, 10591 nonzero
elements).

4.1 Advantages of the Hybrid Method

We can see the first advantage from Fig 2: the high degree of parallelism.
GMRES method is a compute-intensive and data parallelism application. During the
parallel GMRES processes, there are intensive communication and multiple synchro-
nizations. So the parallelism degree is limited. It can’t be increased easily. The more
processors involve, the more communication spend and the slower the convergence is.
In the hybrid method, we add the task parallelism by the participation of Arnoldi
process and Least Square method. We use more processors and we accelerate the
convergence. In this example, the classic gmres method has an optimal number of
processors, 26, and the optimal number for the hybrid method is 34. And we can also
remark that the hybrid method spent less time.

The second advantage is the obvious speed up of convergence. The convergence
with the hybrid method can be faster, even when it is difficult by using the classic
GMRES method (Fig. 3). In this example, we choose a relatively small size of krylov
subspace. We can notice a stagnation of convergence for the classic restarted GMRES
method. However, for the hybrid method, despite the appearance of many peaks, it
converges.

 Grid Computing: A Case Study in Hybrid GMRES Method 293

hybrid method compared with GMRES itself
(N=17000,MG=500,MA=128,nA=10,K=5,L=10)

50

60

70

80

90

100

110

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

number of processors involved

ti
m

e
(s

ec
on

ds
)

 hybrid method

GMRES itself

Fig. 2. The comparison of hybrid method and GMRES itself of the matrix (N=17000) with the
number of processors

Hybrid method compared to GMRES(m) itself
 (N=23560, mG=100, mA=128, l=10)

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

1.00E+07

1.00E+09

1.00E+11

0 30 60 90 120 150 180 210

time (seconds)

R
es

id
ua

l n
or

m

GMRES itself

hybrid method

Fig. 3. The comparison of hybrid method and GMRES itself of the matrix (N=23560) in condi-
tion of the difficult convergence

The third advantage accompanies the second advantage: low requirement of mem-
ory. The use of the restarted GMRES version is because it can limit both computation
and memory requirements. The bigger the size of Krylov subspace is, the better the
convergence is. However, the bigger size means the more memory requirement. Us-
ing the hybrid method, we can realize the convergence by the smaller size of Krylov
subspace.

4.2 Characteristics of the Hybrid Method

As the mention in section 4.1, we can obverse some peaks during the convergence of
hybrid method (Fig. 3). These peaks appear when the process of hybridization occurs.

294 Y. Zhang, G. Bergere, and S. Petiton

The residual increases sharply temporary, however a sharper deduce follows. Overall,
the convergence is achieved. Thereby, too many peaks will damage the efficiency, as
each hybridization influences many GMRES iterations. When the peaks are high and
nearby, divergence may even occur.

Additional, we combine the Arnoldi and Least Square method with the restarted
GMRES in order to accelerate the convergence. Although the computation and com-
munication increases, in fact there is almost no influence for the whole performance
because these two methods are performed in parallel and the communication between
different components is relatively little. Most of their computation time and their
communication time can be overlapped. Table 2 illustrates this characteristic.

The symbols ⑴, ⑵, ⑶ correspond to the condition 1, 2, 3.

Condition1: GMRES on Nancy, Anoldi on Nancy, and Least Square on Bordeaux.
Condition2: GMRES on Nancy, Arnoldi on Orsay, and Least Square on Bordeaux
Condition3: GMRES on Nancy and Orsay, Arnoldi on Nancy and Orsay, and Least

Square on Bordeaux

The term com1 denotes the communication for GMRES computing like exchange

the data with their brother processors. The term com2 denotes the communication
between the components, like eigenvalues, LS parameters.

Table 2. Bandwidth and average latency between the clusters of the sites

Inter-cluster (Nancy+Orsay)
Distribution Inter-

component
Distribution Intra-

component Time(s)
Intra-cluster

(Nancy)
⑴ ⑵ ⑶

Total time 70.73 71.57 72.69 120.8
Computing 58 58.224 58.358 65.54

Com1 12.42 13.319 14.132 54.42
Com2 0.009 0.024 0.055 0.084

Iteration 10 10 10 10

⑵ represents the condition that three different components of the algorithm are

distributed respectively in three different clusters. It is obviously that this distribution
strategy can’t bring much more burden for the communication.

4.3 Complex Problems

Due to the incompatible of the part of hybridization algorithm for the complex ele-
ments, the hybrid method is always used to solve the real linear systems. Now we
apply the hybrid method on the prior transformed system.

From the experimental results (Fig.4, Fig.5), we can notice that the hybrid method
also shows its advantages and characteristic for the solution of complex problem.

 Grid Computing: A Case Study in Hybrid GMRES Method 295

complex matrix young1 compared to GMRES(m) itself (N=841, MG=400, nG=6, nA=2)

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

1.00E+05

0 5 10 15 20 25 30 35 40 45 50

time(s)

no
rm

 re
si

du

GMRES(m) itself

hybrid method

Fig. 4. The comparison of hybrid method and GMRES itself for the complex matrix (N=841)

hybrid method compared to GMRES(m) itself
(N=961, mG=200, mA=256, nG=12, k=3, l=5)

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1.00E+03

0 2 4 6 8 10 12 14 16 18

time(s)

re
si

du
al

 n
or

m

GMRES(m) itself

hybrid method

Fig. 5. The comparison of hybrid method and GMRES itself for the complex matrix (N=961)

5 Conclusion

We implemented our algorithm for the hybrid method GMRES(m)/LS-Arnoldi on
Grid computing platforms: Grid’5000 with the environment MPI, and applied it to the
real problems and the complex problems.

From the experimental results, we sum up the advantages and characteristics of the
hybrid method. We obtain very important convergence accelerations, and increase the
degree of parallelism.

In future, we will try more complex problems, and extend our method to the scien-
tific problems of larger size.

Moreover, the hybrid method can be improved in many places. We think that it’s
better to change the parameters dynamically during the solution of the problem. For
example, we can decide whether or not to proceed the hybridization of LS according
to the speed of the convergence. And we can change the size of Krylov subspaces of

296 Y. Zhang, G. Bergere, and S. Petiton

Arnoldi after each LS hybridization to obtain the more important eigenvalues for the
next hybridization.

In addition, we will do some tests on the other supercomputers or cluster (i.e.
Tsubame in Japon, IBM cell in France) to see the performances. And we will analyze
the energy consumption of every component to optimize the implementation in the
grid environment.

References

1. Cunha, R.D., Da, H.T.: A Parallel Implementation of the Restarted GMRES Iterative Al-
gorithm for Nonsymmetric Systems of Linear Equations. In: Advances in Computational
Mathematics, vol. 2, pp. 261–277. Springer, Heidelberg (1994)

2. Saad, Y., Schultz, M.H.: GMRES: A Generalized GMRES Algorithm for Solving Non-
symmetric Linear Systems. J. SIAM. Sci. Statist. Compt. 7, 856–869 (1986)

3. Edjlali, G., Petiton, S., Emad, N.: Interleaved Parallel Hybrid Arnoldi Method for a Paral-
lel Machine and a Network of Workstations. In: Conference on Information, Systems,
Analysis and Synthesis (ISAS 1996), Orlando, pp. 22–26 (1996)

4. Saad, Y.: Variations on Arnoldi’s Method for Computing Eigenelements of Large Un-
symmetric Matrices. Linear Algebra Appl. 34, 269–295 (1980)

5. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University
Press, Manchester (1992)

6. Saad, Y.: Least Squares Polynomials in the Complex Plane and their Use for Solving Non-
symmetric Linear Systems. J. SIAM. Sci. Statist. Compt. 7, 155–169 (1987)

7. YinTsung, H., WeiDa, C.: A Low Complexity Complex QR Factorization Design for Sig-
nal Detection in MIMO OFDM Systems. In: International Symposium on Circuits and
Systems, pp. 932–935. IEEE Press, Seattle (2008)

8. Baker, A.H., Jessup, E.R., Manteuffel, T.: A Technique for Accelerating the Convergence
of Restarted GMRES. J. SIAM. MATRIX. Anal. Appl. 26, 962–984 (2005)

9. Essai, A., Bergere, G., Petiton, S.: Heterogeneous Parallel Hybrid GMRES/LS-Arnold
Method. In: Ninth SIAM Conference on Parallel Processing for Scientific Computing,
Texas (1999)

10. Manteuffel, T.A.: The Tchebychev Iteration for Nonsymmetric Linear Systems. J. Numer.
Math. 28, 307–327 (1997)

11. Smolarski, D.C., Saylor, P.E.: An Optimum Iterative Method for Solving any Linear Sys-
tem with a Square Matrix. J. BIT. 28, 163–178 (1988)

12. Georgiou, Y., Richard, O., Neyron, P., Huard, G., Martin, C.: A Batch Scheduler with
High Level Components. In: 5th International Symposium on Cluster Computing and the
Grid, pp. 2, 776–783. IEEE Press, Cardiff (2005)

13. Franck, C., Eddy, C., Michel, D., Frederic, D., Yvon, J.: Grid’5000: a Large Scale and
Highly Reconfigurable Grid Experimental Testbed. International Journal of High Perform-
ance Computing Applications 20, 481–494 (2006)

14. Benjamin, Q., Franck, C.: A Survey of Grid Research Tools: Simulators, Emulators and
Real Life Platform. In: 17th IMACS World Congress Scientific Computation, Applied
Mathematics and Simulation, Paris, France (2005)

15. Ye, Z., Bergere, G., Petiton, S.: A Parallel Hybrid Method of GMRES on GRID System.
In: IEEE International Parallel and Distributed Processing Symposium, p. 356. IEEE Press,
California (2007)

16. Grid’5000, http://www.grid5000.fr

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 297–307, 2008.
© IFIP International Federation for Information Processing 2008

Towards Resource Reliability Support for Grid
Workflows

Jiong Yu1,2, Guozhong Tian2, Yuanda Cao1, and Xianhe Sun3

1 School of Computer, Beijing Institute of Technology
2 School of Information Science and Engineering, Xinjiang University

3 Department of Computer Science, Illinois Institute of Technology
yujiong@xju.edu.cn

Abstract. Grid workflow can be defined as an organization of Grid Services into
a well-defined flow of operations, and can be thought of as the composition of
Grid Services over time on heterogeneous and distributed resources in a
well-defined order to accomplish a specific goal. To the time-constrained work-
flow Scheduling in Grids, we present a scheduling algorithm in terms of the fi-
nite-state continuous-time Markov process by selecting a resource combination
scheme which has the lowest expenditure under the certain credit level of the
resource reliability on the critical path in the DAG-based workflow. The simu-
lation shows the validity of theory analysis.

Keywords: Scheduling Algorithm; Resource Reliability; Grid Workflow.

1 Introduction

In order to support complex scientific experiments, the distributed Grid resources need
to be orchestrated while managing the application workflow operations within Grid
environments. Correspondingly, workflow systems for Grid Services are evoking a
high degree of interest. Workflow scheduling is one of the key issues in the workflow
management[1]. A workflow tasks scheduling is a process that maps and manages
execution of inter-dependent tasks on distributed resources. It allocates suitable re-
sources to workflow tasks to satisfy objective functions imposed by users. Proper
scheduling can have significant impact on the performance of workflow systems. Due
to aggregation of geographically distributed autonomous, volatile and heterogeneous
resources in Grid environments, the workflow on Grids differs far from the traditional
workflow and various workflow Scheduling Algorithms are discussed from different
points of view, such as static vs. dynamic policies, objective functions, applications
models, QoS constraints, strategies dealing with dynamic behavior of resources, and so
on. In general, scheduling workflow applications in a distributed system is an
NP-complete problem [2].

A Grid workflow can be represented as a Directed Acyclic Graph (DAG) or a
non-DAG[3]. Nowadays, many scheduling algorithms about the DAG-based Grid
workflow are developing and are divided into two schemes: OPTIMIST and PESSI-
MIST[4]. Time constraints are relaxed in the first scheme, and rigid in the latter. In the
Grid workflow of PESSIMIST, it requires overall deadline, expenditure and reliability

298 J. Yu et al.

constraints for individual tasks, which are explicitly specified by end-users. There are
also other constraints, such as network and availability constraints, etc. Here we focus
on the overall deadline, expenditure and reliability constraints for QoS requirements
within workflows.

The remaining part of the paper is organized as follows: Section 2 introduces the
related work in terms of the availability and scheduling scheme. Section 3 then de-
scribes the architecture and functionalities of the Grid workflow. Section 4 proposes the
algorithm modeling, definition and calculation of the Grid resource reliability within
the critical path and illustrates each step through a simple example. Section 5 provides
performance evaluations through mathematical analysis and experiments. Section 6
presents the conclusions.

2 Related Works

Prediction-based dynamic scheduling uses dynamic information in conjunction with
some results based on prediction. Jin Hyun Son et al.[3] worked out the critical path first,
and then used the M/M/c model of Markovian queuing systems to determine the minimum
number of parallel Grid resources for tasks so as to cost as low as possible. Rajkumar
Buyya[5] proposed a workflow scheduling algorithm that minimizes the cost of execution
while meeting the deadline by using Markov Decision Process approach after finding out
the critical path in the DAG. Analogously, X.-H.Sun’s GHS[6] modeled the resource
usage pattern with a M/G/1 queue system to evaluate the impact of resource availability on
the performance of a remote task at a certain resource reservation rate, and its goal of
scheduling is to minimize the failure-minimization while satisfying the deadline re-
quirement of remote tasks. However, few of them really take account of the volatility of
resources. The Grid resources are based on the assumption that the machines on the Grid
never break down or never present abnormal performance when workflow tasks are run-
ning on them. In fact, the execution time of workflow is affected by ‘normal state’ and
‘abnormal state’ of Grid resources occurring in successive turns. As a result, unsuccessful
execution of a workflow task at any point will result in the failure of meeting user’s
deadlines. GHS[6] considered this failure and used a rescheduling trigger system to mi-
grate a task execution to another resource when its initial contract is broken or a better
resource is found, but it is difficult to meet the overall deadline finally.

In order to produce a good schedule, estimating the resource scheme reliability (i.e. a
probability that all of working resources for workflow tasks are being in the ‘normal
state’) is crucial, especially for constructing a preliminary workflow schedule. By using
estimation techniques, it is possible for workflow schedulers to predict how tasks in a
workflow or sub-workflow will behave on distributed heterogeneous resources and
thus make decisions on how and where to run them.

Overall deadline time is a basic measure for the workflow performance. To model
the entire workflow as an optimization problem will produce the larger scheduling
overhead. In some literatures (e.g.[5][7][8]), Quite a few algorithms are mainly con-
sidered to meet the execution time request of the critical path tasks (activities), because
the critical path is a sequence of activities from the beginning to the end of a workflow
that has the longest average execution time. The task within the critical path is called
the critical task. Similarly, we focus on the resource combination reliability within the

 Towards Resource Reliability Support for Grid Workflows 299

critical path. To the critical path task in a DAG, the reliability of Grid resources should
be the first consideration which is prior to the expenditure limit, et al, but not to the
non-critical path task. There is a simple reason that even if the lower reliability of
resources result in unsuccessful execution of a non-critical path task which is relatively
short, the task will be rescheduled to prevent the potential performance loss and there is
very little probability for failure to recur because of the multiplication of probabilities
principle. But we have allowed for another case at the same time: if difference in
execution time makespan between tasks on the critical path and tasks on the
non-critical path is less than some relative threshold, the question have to be explored
further. Under the above-mentioned condition, if we just take into account the reli-
ability of Grid resources within the critical path, the result is nonsense, because im-
portance of the Grid resource reliability within the non-critical path is not less than
within the critical path, from another point of view, which is logically equivalent to the
reliability of the two-units system in series, and any execution failure of task within the
non-critical path will affect the subsequence task within the critical path. Through
above analysis, we proposed a stochastic algorithm based on finite-state continu-
ous-time Markov process to solve the problem.

3 Overview of Grid Workflow Management System

Workflow is concerned with the automation of procedures whereby files and data are
passed between participants according to a defined set of rules to achieve an overall
goal[9]. Fig.1. shows the architecture and functionalities supported by various com-
ponents of the Grid workflow system based on the workflow reference model proposed
by Workflow Management Coalition (WfMC)[10]. At the highest level, functions of
Grid workflow management systems could be characterized into build time functions
and run time functions. The build-time functions are concerned with defining, and
modeling workflow tasks and their dependencies; while the run-time functions are
concerned with managing workflow executions and interactions with Grid resources
for processing workflow applications. Users interact with workflow modeling tools to
generate a workflow specification, which is submitted to a run-time service called the
workflow enactment service for execution. Major functions provided by the workflow
enactment service are scheduling, fault management and data movement. The work-
flow enactment service may be built on the top of low level Grid middleware (e.g.
Globus toolkit), through which the workflow management system invokes services
provided by Grid resources[1]. To ensure workflow management system adopt ap-
propriate scheduling strategy and allocate the corresponding resource to execute task of
workflow specification, the information about resources may need to be retrieved
through GIS(Grid information services). This information include identifying the list of
authorized machines, cost of resource access, keeping track of resource status infor-
mation, parameters, the historical data related to a particular user’s application per-
formance or experience which can also be used in predicting the share of available of
resources for user while making scheduling decisions based on QoS constraints. As
Grid resources are not dedicated to the owners of the workflow management systems,
the Grid workflow management system also needs to identify dynamic information,
such as resource accessibility, system workload, and network performance during
execution time.

300 J. Yu et al.

Fig. 1. Grid workflow management systems

4 Description of Algorithm

This section consists of two parts to illustrate our approach. 1st part is the algorithm
modeling, which include definition and calculation of reliability of Grid resources
within the critical path. 2nd part describes main steps of algorithm.

4.1 The Model

The application can be represented by a directed acyclic graph G(V,E,T) as shown in
Fig. 2., where :V(G) ={V1,V2,V3,V4,V5} is the set of v nodes, and each node vi(vi∈
V) represents a task starting point or ending point. Not losing generality, v nodes can be
classified as a disunited node (e.g. node v1 in Fig.2.) which have more than one sub-
sequence node, simple node(e.g. node v2,v3,v5 in Fig.2.)which have not more than one
previous node or subsequence node, united node(e.g. node v4 in Fig.2.) which have
more than one previous node, and hybrid node which have both disunited node char-
acter and united node character(such node does not appear in our example to simply
demonstrate our methodology).

E(G)={e1,e2,e3,e4,e5} is the set of workflow tasks, in which, e1=<V1,V2>, e2
=<V1,V3>, e3=<V2 ,V4>, e4=<V3,V4>, e5=<V4,V5>. The directed edge ei joins two
nodes which denote task starting point and ending point respectively.

T(G)={t1,t2,t3,t4,t5}={7, 5, 8, 12, 4} is the set of computation costs in which each ti
gives the estimated execution time of related task ei (e.g. t1=7 denotes that estimated
execution time of ei is 7 time unit) .

3

]

4

25

2

1
587 4

[R7]

[R3]

[R1，R2] [R4

[R5，R] 6

1

Fig. 2. Task and resource pool of DAG-Grid workflow application

 Towards Resource Reliability Support for Grid Workflows 301

In addition, we can reasonably assume in the Grid environment that the number of
Grid resources is very likely more than one and that any of these resources can finish
certain task ei within the same time limit. These resources are defined as a resource
pool of ei which is denoted by Rei(e.g. Re1= [R1,R2]). Furthermore, the execution time
of workflow is affected by ‘normal state’ and ‘abnormal state’ of Grid resources oc-
curring in successive turns. As discussed in section2, we assume in this paper that both
the ‘normal state’ and the ‘abnormal state’ of the Grid resource Ri are exponentially
distributed with parameterλRi,µRi, and that resource owners specify their service price
and charge users according to the amount of resources they consume. Service price per
unit time required by Grid resource Ri is denoted by cRi. Thus, as showed in Fig.2, the
number of resource pool is five, i.e. Re1=[R1(λR1,µR1, c R1), R2(λR2,µR2, cR2)];
Re2=[R3(λR3,µR3, cR3)]; Re3=[R4(λR4,µR4, c R4)] ; Re4=[R5(λR5,µR5, cR5),
R6(λR6,µR6, cR6)]; Re5=[R7(λR7,µR7, cR7)]. By the way, according to section3, the
above information related to resources can be obtained from GIS.

Definition 1. Critical united node is defined as a united node on the critical path in
DAG, e.g. node v4 in Fig.2. (It is easy for us to write cp (critical path) out:
cp=V1 V3 V4 V5, which is marked out with thick lines)

Definition 2. Critical disunited node is defined as a disunited node on the critical path
in DAG, e.g. node v1 in Fig.2.

Definition 3. Critical region denoted by [Vi,Vj] is defined as a region of task between
critical united node and critical disunited node in DAG, e.g. [V1,V4] is a critical region
in Fig.2.

Definition 4. Set of related tasks within critical region denoted by E[vi,vj] is defined as
all of tasks within critical region, which have to satisfy following condition(relative
threshold): tv > tr (tv denotes estimated execution time of any task on the non-critical
path within [Vi,Vj]; tr is equal to the difference of total estimated execution time of all
tasks between on the critical path and on the non-critical path within [Vi,Vj]). Further,
total estimated execution time of E[vi,vj] denoted by T[vi,vj] is equal to the total estimated
execution time of all tasks within [Vi,Vj]. For example, owing to t2+t4-t1-t3=tr=T4=2,
t1>tr, t3>tr, hence, E[v1,v4]= {e1,e2,e3, e4}, T[v1,v4]= t2+t4=17. For the sake of simplicity,
our example only presented the single non-critical path and the single critical region.

Definition 5. The reliability of single resource denoted by PRi is defined as absolute
probability by which single resource Ri is in ‘normal state’.

Definition 6. The reliability of parallel resource group denoted by P<Ri-Ti,Rj-Ti> is defined
as following: Clearly, T[vi,vj] can be separated into several phases T1,T2,…Tn (we call
them the parallel period of time), and if ei and ej (or a group of tasks)in E[vi,vj] are
always being executed at Ri and Rj (or a group of resources) during the phase Ti re-
spectively, we define Ri and Rj as parallel resource group in the phase Ti, denoted by
<Ri-Ti, Rj-Ti>; define ei and ej(possibly partial or entire) as the parallel task segment
on the phase Ti denoted by <ei-Ti, ej-Ti>; while probability that Ri and Rj are always
being in ‘normal state’ during the phase Ti is called reliability of parallel resource
group denoted by P<Ri-Ti,Rj-Ti>. Fig.3. can help to comprehend the definition: T[v1,v4]
can be separated into 4 phases, T1=5; T2=2; T3=8; T4=2; parallel task segment is,

302 J. Yu et al.

respectively, <e1-T1, e2-T1>, <e1-T2, e4-T2>, <e3-T3, e4-T3>, <0, e4-T4>; if we
choose R2 in Re1={R1,R2} as execution resource of e1 and R6 in Re4={R5,R6} as
execution resource of e4, parallel resource groups related to above 4 parallel resource
group will be <R2-T1,R3-T1>, <R2-T2,R6-T2>, <R4-T3, R6-T3>, <0,R6-T4>, while
related 4 reliability of parallel resource groups will be P<R2-T1,R3-T1>, P<R2-T2,R6-T2>,
P<R4-T3,R6-T3>, P<0,R6-T4>, respectively.

Fig. 3. Parallel execution time of DAG-Grid workflow application

Definition 7. The reliability of critical region denoted by P[Vi,Vj] is defined as a prob-
ability that all parallel resource groups are being in the ‘normal state’ during their
respective parallel phase. By multiplication of probabilities principle, We have the

following relation: P[Vi,Vj]= ∏
=

><

n

1)T(i
Ti-RjTi,-RiP ; Assume that, in [Vi,Vj], the number of

resource combination scheme is m, then the scheme i reliability of critical region is
denoted by P[Vi,Vj]-i. For example, in Fig.3., there are 4 schemes, i.e. ①{R1,R3,R4,R5},
②{R1,R3,R4,R6},③{R2,R3,R4, R5},④{R2,R3,R4,R6}, then the 4th scheme reli-
ability of critical region is denoted by P[V1,V4]-4, and P[V1,V4]-4=P<R2-T1,R3-T1>*P<R2-T2,R6-T2>

*P<R4-T3, R6-T3>*P<0,R6-T4>.

Definition 8. The reliability of resource combination on the critical path denoted by Pcp
is defined as a probability which is equal to the certain scheme reliability of the critical
region multiplied by the certain scheme reliability of the non-critical region.

Definition 9. Credit level of reliability of resource denoted by α is defined as a reli-
ability of resource combination on a critical path required by user.

In the following, according to above definition, we derive a mathematic model to as-
certain PRi, P<Ri-Ti,Rj-Ti> , P[Vi,Vj] and Pcp by computation.

Learning from knowledge of stochastic process, we are able to conclude that the
process, in which the ‘normal state’ and the ‘abnormal state’ of the Grid resource occur
in successive turns and both the ‘normal state’ and the ‘abnormal state’ of the Grid
resource Ri are exponentially distributed with parameterλRi,µRi , is a finite-state con-
tinuous-time homogeneity Markov process. If ‘abnormal state’ happened to any re-
source of <Ri-Ti,Rj-Ti> within Ti, the successor task of [Vi,Vj] would not start at
appointed time, it is logically convenient to visualize P<Ri-Ti,Rj-Ti> as reliability of the
two-units system in series, as analyzed in section 2. Thus, we can get the two-units

 Towards Resource Reliability Support for Grid Workflows 303

system in series models with state space S={0,1,2}, where 0 implies that any resource
of <Ri-Ti, Rj-Ti> is in the ‘normal state’; 1 implies that the Ri resource of
<Ri-Ti,Rj-Ti> is in the ‘abnormal state’; 2 implies that the Rj resource of <Ri-Ti,Rj-Ti>
is in the ‘abnormal state’. Setting Nt, Nt∈S, implies the state of the two-units system in
series on time t, and the infinitesimal behavior of Nt is governed by the following
q-matrix (the infinitesimal generator matrix) [11].

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

+

RjRj

RiRi

RjRiRjRi

Q

µµ
µµ

λλλλ

0

0

)(

 (1)

The q-matrix as in (1) is obviously communicating and is possessed of symmetric

properties with symmetric distribution),,(210 αααα = , and satisfies

RiRi µαλα 10 = , RjRj µαλα 20 = , namely, 01 α
µ
λ

α
Ri

Ri= , 02 α
µ
λ

α
Rj

Rj= . Setting

1
2,1,0)1)(,,1()(−++==

Rj

Rj

Ri

Ri

Rj

Rj

Ri

Ri

µ
λ

µ
λ

µ
λ

µ
λππππ , then it is the reversible distribution of Nt and

the reliability of the two-units system in series

1
0TiRj-Ti,-Ri)1(P −

>< ++==
Rj

Rj

Ri

Ri

µ
λ

µ
λπ (2)

By virtue of (2), it can be deduced that reliability of Single resource

PRi=µRi/(λRi+µRi) (3)

And it can also extend to reliability of the multi-units system in series[11]. For the
simplicity, we just only describe our algorithm through example of the two-unit system
in series.

As showed in Fig.3, if we select the 4th resource combination scheme, by virtue of
(2), can get results as following:

P<R2-T1,R3-T1>=
1

3

3

2

2
)1(−++

R

R

R

R

µ
λ

µ
λ

; P<R2-T2,R6-T2>=
1

6

6

2

2
)1(−++

R

R

R

R

µ
λ

µ
λ

;

P <R4-T3,R6-T3>=
1

6

6

4

4
)1(−++

R

R

R

R

µ
λ

µ
λ

; P <0,R6-T4> =
1

6

6
)1(−+

R

R

µ
λ

 ;

P[V1,V4]-4=P<R2-T1,R3-T1>*P<R2-T2,R6-T2>*P<R4-T3,R6 -T3>*P<0,R6-T4>

=
1

3

3

2

2
)1(−++

R

R

R

R

µ
λ

µ
λ

*
1

6

6

2

2
)1(−++

R

R

R

R

µ
λ

µ
λ

*
1

6

6

4

4
)1(−++

R

R

R

R

µ
λ

µ
λ

*
1

6

6
)1(−+

R

R

µ
λ

。

Analogously, P[V1,V4]-1, P[V1,V4]-2, P[V1,V4]-3 can be deduced. In addition, there is only
one task e5 in non-critical region and Re5=[R7] means that there is only one available

resource, PR7=
1

7

7
)1(−+

R

R

µ
λ

, given by (3). Thus, Pcp=P<V1,V4>-4*PR7=
1

3

3

2

2
)1(−++

R

R

R

R

µ
λ

µ
λ

*

304 J. Yu et al.

1

6

6

2

2
)1(−++

R

R

R

R

µ
λ

µ
λ

 *
1

6

6

4

4
)1(−++

R

R

R

R

µ
λ

µ
λ

 *
1

6

6
)1(−+

R

R

µ
λ

*
1

7

7
)1(−+

R

R

µ
λ

, namely it is one of reliability

of resource combination on critical path in DAG(the 4th scheme on the critical region
and R7 on the non-critical path). Other Pcp can be analogously calculated through the
above-mention methodology.

4.2 Main Steps of Algorithm

Step 1. Find out the critical path e in DAG employing the traditional classic algorithm.
(We omit them in this paper, to allow for being less related to the topic).

Step 2. Find out the entire critical region [Vi,Vj] on the critical path.

Step 3. While (each critical region)
{ If (E[vi,vj] exist)

//Discriminance is based on the //relativethreshold condition
 { Compute each P[Vi,Vj]-i ;

// (i∈{1,2,…m=the number of //resource combination scheme
//in [Vi,Vj]})

 E(G)=E(G)- E[vi,vj]
 }
 }

Step 4. If (E(G)≠NULL)
{WHILE (each task ei)

//ei∈E(G)
 Compute each reliability of single resource Ri;

//Ri∈Rei and ei∈E(G)
}

Step 5. Compute each Pcp and each cost of resource combination on the critical path in
DAG.

Step 6. Choose a scheme of resource combination on the critical path in DAG, which
should satisfy the following condition: Pcp>α and minimize the total expenditure.

5 Performance Evaluation

We have performed simulations of the example discussed in Fig.2 and Fig.3, in which
QoS requirements is under the α =75% credit level of reliability of resource combi-
nation on the critical path in DAG and used related simulation parameters is illustrated
as following Table 1.

According to our algorithm and above parameters, we get each value of Pcp (the re-
liability of resource combination on the critical path in DAG) and related total expen-
diture, as showed in Table 2.

Clearly, scheme ④ of resource combination on the critical path in DAG, i.e. {R2, R3,
R4, R6, R7} should be the best preliminary workflow schedule, because it be able to
satisfy following condition: Pcp>75% and with lower total expenditure, From Table 2.

 Towards Resource Reliability Support for Grid Workflows 305

Table 1. Simulation Parameters

Resource Ri λRi µRi PRi=µRi/（λRi+µRi） c Ri

R1 1/5 5 0．9615 12

R2 1/6 4 0．9600 9

R3 1/7 3 0．9545 5

R4 1/8 2 0．9412 4

R5 1/12 3 0．8780 3

R6 1/11 6 0．9851 13

R7 1/13 7 0．9891 14

Table 2. Value of Pcp and Total expenditure

Scheme of resource Pcp
Total

expenditure

①{R1,R3,R4,R5,R7} 0.5638 233

②{R1,R3,R4,R6,R7} 0.7879 353

③{R2,R3,R4,R5,R7} 0.5622 212

④{R2,R3,R4,R6,R7} 0.7854 332

We present the most important part of our simulation and analysis below. Fig.4. il-

lustrates a case of two states of all resources, in which, higher intermittent line attaching
to Ri denotes ‘abnormal state’, while lower intermittent line attaching to Ri denotes the
‘normal state’. To scheme ④, in T3, the ‘abnormal state’ happen to R2, but R2 have
already finished e1 task in the first two phase T1 and T2 ; it is R4 and R6 being in the
‘normal state’ that is required to carry out task e3 and e4, according to Fig.3., R6 keeps
on executing e4 and its state keeps on being ‘normal state’ throughout T4; subse-
quently, the ‘abnormal state’ happen to R6 in T5, but R6 have already finished work-
flow task in T4 and these ‘abnormal state’ do not affect the entire workflow. Therefore,
in all the phase T1-T5, corresponding resources always are being the ‘normal state’
during the time of executing respective task. Based on these observations, workflow
has been carried out successfully. To scheme ③, parallel resource group in the phase
T3 is <R4-T3,R5-T3>. Although R4 can complete task e3, the ‘abnormal state’ hap-
pened to R5 in T3, which will make R7 to fail to start e5 on time eventually. Hence, if
choose scheme ③, it would not meet the time limit in experiments this time. We have
conducted a large number of above experiments under the same conditions, successful
workflow execution rate of each scheme is as in Fig.5.

306 J. Yu et al.

Fig. 4. Two State Alternation of all resource

Fig. 5. Successful execution rate of each scheme

Above simulation experiments demonstrate the efficacy of workflow scheduling
algorithm. In the Grid computing environment, when there are a few resources which
can finish a certain task within the same time limit and whose reliability are different,
our algorithm is able to efficiently choose more reliable Grid resource to carry out
time-restricted workflow with the lower total expenditure.

6 Conclusion

In this paper, we present an approximation method for computing the reliability of
resource combination. This method is constructed based on stochastic processes, fi-
nite-state continuous-time Markov process. Simulation experiments show that our
approach produces both good execution performance and scheduling results. Assuming
that both the ‘normal state’ and the ‘abnormal state’ of the Grid resource are exponen-
tially distributed is approximate approach. In our future work, we are going to substi-
tute more appropriate probability density functions for the exponential distribution
function to improve Grid workflow scheduling performance.

 Towards Resource Reliability Support for Grid Workflows 307

Acknowledgements

This research is supported by National Natural Science Foundation of China under
Grant No. 60563002 and Scientific Research Program of the Higher Education Insti-
tution of XinJiang under Grant No. XJEDU2004I03.

References

1. Jia, Y., Rajkumar, B.: A Taxonomy of Workflow Management Systems for Grid Comput-
ing. J. Grid Computing 3(3-4), 171–200 (2005)

2. Ullman, J.D.: NP-complete Scheduling Problems. J. Computer and System Sciences l(10),
384–393 (1975)

3. Jin, H.S., Myoung, H.K.: Improving the performance of time-constrained workflow proc-
essing. J. System and Software 58(3), 211–219 (2001)

4. Eunjoung, B., Sungjin, C., Maengsoon, B., et al.: MJSA Markov job scheduler based on
availability in desktop grid. Future Generation Computer Systems 23(4), 616–622 (2007)

5. Jia, Y., Rajkumar, B., Chen, K.T.: QoS-based Scheduling of workflow Applications on
Service Grids. In: 1st IEEE International Conference one-Science and Grid Computing.
IEEE Computer Science Press, Melbourne (2005)

6. Xianhe, S., Lingou, G., Edward, F.W.: Performance modeling and prediction of
non-dedicated network computing. IEEE Trans. Comput. 51(9), 1041–1055 (2002)

7. Yu, J., Buyya, R., Tham, C.K.: Cost-based Scheduling of Scientific Workflow Applications
on Utility Grids. J. System and Software 233, 236–242 (2005)

8. Hagras, T., Janec, J.: A high performance and lower complexity algorithm for compile-time
task scheduling in heterogeneous systems. Parallel Computing 31, 653–670 (2005)

9. Hollinsworth, D.: The Workflow Reference Model. Technical report, Workflow Manage-
ment Coalition, TC00-1003 (1994)

10. W3C. XML Pipeline Definition Language Version 1.0, http://www.w3.org/TR/
2002/NOTE-xml-pipeline-20020228

11. Guang-lu, G.: Applied Stochastic process tutorial, pp. 149–155. Tsinghua University pub-
lishing company, Beijing (2004)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 308–319, 2008.
© IFIP International Federation for Information Processing 2008

A SyncML Middleware-Based Solution for Pervasive
Relational Data Synchronization

Haitao Yang1,2,3, Peng Yang4, Pingjing Lu4, and Zhenghua Wang4

1 Guangdong Construction Information Center, Guangzhou 510500, China
yhtyxc@hotmail.com

2 Institute of Computing Technology,
3 Graduate University, Chinese Academy of Sciences, Beijing 100080, China
4 School of Computer Science, National University of Defense Technology,

Changsha 410073, China

Abstract. In ubiquitous data applications, local data replicas are often essential
for mobile users to get more reliable and faster access. Referring to the open
source-code resource Sync4j for a data synchronization solution of lower price,
we design and implement an application-independent SyncML-complied mid-
dleware, named GSMS, to synchronize data between heterogeneous Relational
Database Management Systems (RDBMSs), which is featured with no interfer-
ence in the data relation schemas and program logics of existent applications.
The performance stability of GSMS is verified through synchronization ex-
periments on different combinations of prevalent RDBMS.

Keywords: Data synchronization, middleware, distributed heterogeneous
RDBMS, SyncML, Pervasive computing.

1 Introduction

With the rapid proliferation of pervasive computing, related academic and industrial
societies have spent a great deal of effort in infrastructural solutions for data synchro-
nization across distributed diverse devices or autonomous systems. However, all the
workable solutions currently still fall short of what we regard as the technology ideal,
the Date's famous 12 rules for DDBSs (Distributed Database Systems), particularly,
the sixth rule: “data replication transparency” [3]. In practice, to efficiently and effec-
tively fulfill such rules remains one of the most subtle issues in elaborating a generic
data synchronization product. As industrial protocols and products are paving the way
for the ubiquitous data availability, generic heterogeneous data synchronization solu-
tions are most wanted on a product level.

1.1 Project Background and Related Work

The term synchronization (in short sync as verb and noun), refers to the process of
propagating updates across distributed replicas of data objects, which is often mixed
with the “replication” that does not directly refer to timeliness or schedule while sync
does. Among work about data replication in traditional applications [5, 13] and data

 A SyncML Middleware-Based Solution 309

sync in mobile applications [4], we notice several typical techniques that help or
enlighten us greatly in shaping a generic, flexible and feasible sync solution.

First of all, we refer to the academic literature. As to the consistency aspect, J.
Gray at el [6] warned that a synchronous handling mode is unrealistic due to its low
success rate, R. Gallersdörfer and M. Nicola [5] suggested relaxing consistency for
better performance, and H. Yu and A. Vahdat [16] argued that a service's availability
is worthy of its replicas' consistency degradation for most Internet scenarios. On the
connectivity aspect, Nikaein and Bonnet [8] and Tan at el [14] pointed out that a tree
topology has the privilege of minimum cost of propagation. With respect to sync
middleware schema, the middleware implementation frame reported by J.E. Ar-
mendáriz-Iñigo et al [2] represents a classical design, in which the middleware as an
intermediate layer is plugged in between the application and underlying DBMS, and
entailed to intercept all calls to the surrogated DBMS. However, such a framework is
not desirable for users and DBMS vendors due to its fatal defects: it imposes a bottle-
neck on the hosting DBMS and its implementation is tightly bounded to the extension
mechanism of the DBMS.

Then, we turn to the industrial side. Although the main bodies (over 650 leading
companies) of the communication industries have jointly promoted a platform-
independent data sync standard, the SyncML1 (Synchronization Markup Language) as
a generic framework of information exchange for all devices and applications over
any network [12], however, the data sync requirements from commercial and indus-
trial societies are still far from satisfaction [7]. Moreover, to the interest of most me-
dium and small enterprises, it is necessitated to seek data sync solutions featured with
low price, easy deployment, free tailoring, and independent from specific vendors of
DBMSs.

Finally, we should mention a well-known prototype of SyncML-based data sync
middleware, the sync4j system [4], which is an open source Java implementation of
SyncML. Although sync4j has many merits over contemporary products, its applica-
bility is degraded by several non-trivial flaws which include altering data tables to be
synced, lacking application verifications, and incapability to sync heterogeneous
RDBMSs. Therefore, we ought to develop an effective middleware system free of the
above mentioned weakness, and preferably with reference to open source-code
resources.

1.2 Our Major Approach

We set forth first the main design principles: 1) using simple and flexible topology
connections which have the advantages of fast failure detection, clear exchange tar-
gets, light network traffic, and easily-organized access control; 2) interfering least in
client applications; 3) easy to add or delete nodes from sync network; 4) applicable
for limited resource client devices.

Abiding the above principles we design and implement a SyncML-complied mid-
dleware data sync system, which can be extended to any RDBMS by developing the
corresponding add-on modules. We assume a middleware framework distinct from

1 Although SyncML is currently referred to as OMA DS and DM (Open Mobile Alliance Data

Synchronization and Device Management) we still use the earlier name for the conciseness.

310 H. Yang et al.

the classical one: it is no longer the agent or entrance of the hosting DBMS, but is
purely an add-on just working in parallel with the DBMS. Our sync middleware
consists of two parts: 1) the inner DBMS part which is realized with triggers and
store procedures, and 2) the outside DBMS part which is coded as Java-programmed
software components. We develop two types of sync middleware: server and client.
The client is light-weighted, while the server is endowed with much complex capa-
bility. The sync add-ons are all based on a RDBMS that supports the standard SQL
and provides trigger mechanisms for timely capturing basic data manipulation
events.

In general, a sync process mainly has four tasks: data-change capture, change
propagation, conflict detection, and conflict reconciliation (ConR). For the former
three, often a generic syntax-based model could handle well, whereas it is not feasible
to implement a good ConR without sound semantic knowledge of data change. At this
point, what we can do best is to lower the chance of conflict occurrence. In our ap-
proach, the job of change capture is weighted over others, because if a change is
missed, it can not be remedied until the next change occurs at the same object.

2 Sync Model

The sync model can be elucidated by related basic notions, terms, and patterns:
Data Node refers to a device where the data objects of concern reside, which nor-

mally has the capability and responsibility for maintaining data locally.
Sync-client, in short client, refers to the SyncML protocol implementing role that

issues “request” messages [9].
Sync-server, in short server, refers to the SyncML protocol implementing role that

receives and handles “request” messages, and responds with “response” messages [9].
Sync-node refers to a software instance that acts as a sync-client or sync-server.
In data sync (DS) applications, a data node must be assigned to and thereby synced

through a sync-node, and normally they should be located geographically close to
each other, e.g. at least in the same LAN. By default, we just use a single word node
to refer to the tuple of a data node and its sync-node.

Replica refers to homogenous instances of the same data entity, which could be di-
verse temporarily, but should eventually become identical in content. In relational
data models, different replicas of the same data entity must have their attributes one-
to-one matched with each other regardless of whether they might be contained in
different relations at different nodes.

A basic sync action reflects that a pair of nodes is having a sync session with each
other. In a sync action, one node must be designated as the server according to the
SyncML protocol.

Here, we use the term sync-wave to refer to a series of adjacent subsequent sync ac-
tions which just resemble the propagation of a specific version of a replica. The meet
of two sync-waves will result in a new merged sync-wave which only contains the
agreed-on content but unsolved conflicts. The path a sync-wave travels is named the
trace of a sync-wave.

 A SyncML Middleware-Based Solution 311

To simplify the network management, we assign each node a level, and designate
that a sync node is limited to syncing upwards only with one node on the higher lever,
thus a tree topology is formed. As each parent node and its children alone in fact form
a star topology, in which the center node plays a role of the server while the others act
as clients, we call such a topology the hierarchy-star to stress the asymmetry and
locality. The Hierarchy-Star (HS) concept reflects that 1) the asymmetry of nodes'
capabilities in a sync relation in general; 2) except within the bone-network, the avail-
able communication paths for the end user are actually limited hierarchically; and 3)
in Internet any loop path is forbidden.

Content transfer method of data-change propagation: the latest content of a repli-
cated object is delivered, also called the state transfer mode [13], which is apt for
propagating the data changes created by the Update and Insert manipulations.

Operation transfer method of change propagation: the data manipulation com-
mands are transferred, which is used for transferring the data changes of delete opera-
tions, to decrease the transfer amount (especially for large records).

Change_log: to record the captured changes of monitored data sets in a separate
specific table. This approach has the merit of not altering the data schema of existent
applications. And whenever a record of change has been successfully transferred to
the sync server node, it can be deleted from the change_log at the client end safely in
our HS propagation topology. Of course, the merit of a separate change_log is at the
cost of a certain redundant store of the changed data record.

Snapshot: given that the local consistency of data sets is guaranteed at each node,
the global intermediate state of sync can be reviewed as a series of snapshots about
each node's state and the progressive sync-wave.

Refining change-capture unit: in a relational database, the minimal change units
can not be smaller than a single field. Within the trigger mechanism, most of the
prevalent DBMSs, e.g., MySQL 5.1(higher), Oracle 8 (higher), provide field deter-
miners such as New or Old to refer to the values of a target field before or after the
Update operation respectively. With these delimiters we can refine the unit of change-
capture down to the field level, given that the tables do not contain any field of ab-
normal data type, e.g., LOB in Oracle. In our design, a GUI is served for a sync DBA
(database administrator) to select a change capture unit from a field or record.

Configuration to include sync objects: the sync DBA at each node shall be re-
quested to tell the GSMS (generic sync middleware system) which tables of which
databases are to be included in or removed from the sync schedule. The table structure
is then rendered to the GSMS at this stage, which includes the primary key declara-
tion, as well as the name and data type of fields to be synced.

Synchronization frequency: in general, the quicker the propagation, the lower the
degree of replica inconsistency and the rate of conflict, but the higher the complexity
and overhead, especially when the application is write intensive [13].

Sync Baseline: in the incremental mode, only the data units that are known to have
changed after the last sync need to be synced, whereas in the total mode all data
should be replicated.

Mapping table: to cope with heterogeneous fragmentation of sync data objects, at
server nodes we have to configure a mapping between the synced fields of each local
replica and the corresponding fields of the counterpart.

312 H. Yang et al.

Table 1. Change_log Schema

Field description node
Table_name The local name of sync table All
SeqN_change The sequence number of a table's changes All
Key_field The name of a field of the primary key All
StrValue_kf The string value of the data field indicated by key_field All
Change_type “U, D, N”--Update, Delete, iNsert or New operations All
Chg_lst_fields Indicate which fields changed All
Timestamp Arrival time of this sync-wave or the time of local change All
URI_sync URI of the sync neighbor Non-leaf
URI _ Origin URI of this sync-wave's creator Non-leaf
Birth_time Birth time of this sync-wave Non-leaf
Sem Semaphore for concurrent processes All

3 Change_log's Design

The schema of the change_log that records local replica changes is shown in Table 1.
SeqN_change stands for the sequence number of data changes, which are numbered
separately for different sync data tables – each time a record is changed the value of the
corresponding SeqN_change will be increased by one. change_type = "U|D|N" stands
for "Update|Delete|iNsert" data manipulation operations (DMLs) respectively. Nor-
mally, each DML operation creates a set of change records in the change_log, but a
Update DMLs that changes the primary key's value will create two sets of change_log
records, of which one is responding to a set of change_log records of the De-
lete(old.Key) operation, and the other is equivalent to the Insert (new.Key)'s.
chg_lst_fields note down the list of fields whose values have been changed since the last
sync, which is expressed as a bit string with one bit for one field sequentially (a Null
value indicates all fields). SeqN_change will link all fields' values of a primary key
instance to a specific data change, which is useful in refining the sync control granular-
ity. Timestamp indicates the time that a local data change takes effect. URI_origin iden-
tifies the creator of the current version of the data record, which is different from
URI_sync that indicates the neighbor node that passes the current version directly to this
node. Fields URI_origin and Birth_time together mark uniquely the origin of the current
change, which is useful for reconciling the conflicts of data versions.

Now, we elucidate how to record a data change in the change_log, and how to
form a change propagation message from a set of change_log records (of the same
SeqN_change). Given that a sync data table has the primary key with an attribute set
{fi |1≤i≤k}. Normally DBMSs limit attributes of a primary key must be of a compara-
ble type, which excludes any abnormal types (e.g. Oracle's Lob data type, etc.), i.e.
any attribute's value of a primary key can be translated into a string type, and will be
stored in the StrValue_kf field when the data record has a change – meanwhile the
attribute name is stored in Key_field. Each change_log record is uniquely identified
by the table_name, SeqN_change, and Key_field's values. Each tuple (fi,
Str(fi)){1≤i≤k} has a corresponding record in the change_log, where Str(f) is a func-
tion that translate the value of f into a string expression. Therefore, a change of a data
record with a primary key of k attributes is separately recorded in k records of the
change_log under the same value of SeqN_change.When the tuple {Str(fi)|1≤i≤k} of

 A SyncML Middleware-Based Solution 313

the primary key is used to locate the corresponding record in the data table (remote or
local), a mapping process is required to revert Str(fi) {1≤i≤k} to the data type of the
target DBMS, which is handled by the outer part of a sync middleware. The triggers
are responsible for mapping the primary key's value into the change_log.

For setting up the time baseline of sync, it is sufficient to note down the timestamp
of last sync at only one node of the synced pair.

In our sync model, a sync action is centred at the local server, which along with the
HS topology makes the GSMS work well for most cases without precise clock sync
among server nodes. This is quite significant, since precise clock syncs may increase
the time complexity and space overheads greatly.

Be adaptive to the constrained resource of client-only devices (e.g. PDAs, cell
phones), the change_log's records at leaf nodes will be purged after each sync action,
whereas those at non-leaf nodes are kept until all involved syncs being fulfilled. To
avoid the trouble of tackling new log records created during a sync action, the sync
process should note down its start moment, and only synchronize data with a change
timestamp before that moment.

4 Sync Session

Regarding the asymmetry of the SyncML protocol, our GSMS provides four sync
patterns for choices, named “two-way”, “slow”, “one-way”, and “refresh”. The for-
mer two are bidirectional, whereas the others are unilateral. The “two-way” and “one-
way” patterns correspond to the incremental mode while the others belong to the total
mode. The “slow” pattern exchanges the whole content of replicas between a sync
pair, whereas the “refresh” one just overwrites the client's replica with the server's. In
GSMS the sync pattern is configurable.

The one-way and refresh patterns are intended for special scenarios of applications:
e.g., where the authority of one node prevails clearly over the other, or when the client
belongs to a receiver-only device or is limited to read-access of replicas at the server
node, or the case of data restoration.

Normally, bidirectional sync in total mode is used to initialize the sync system,
where the DBA should designate a fiducial node as the initial data source. Often,
people regard the total mode of data sync as a kind of maintenance mode, and soft-
ware in this mode should occupy the maintained objects exclusively. Besides, a sound
GSMS should be able to resume an interrupted sync at the save point nearest to the
abort point especially for the total mode. This can be achieved if the sync session is
processed in a lock-step mode.

Transferring enormous data in a single sync session should be avoided, since del-
uging data will likely exceed the capability of the middleware-hosting web server,
which may result in a serious performance decline or even a crash. These cases often
occur during syncing a very large data table in total mode, or a single huge record in
any mode, or when a “cache-all and write-once” strategy is used (a routine measure
assumed in SyncML documents [10]). Thus, we should divide such a large replication
into several sessions so that each is responsible just for a fragment of the data.

In our solution, a large data record transfer only occurs when syncing Update or
Insert operations. An Update operation can be substituted by a series of Update

314 H. Yang et al.

operations that each exerts on only one field, whereas an Insert operation is equiva-
lent to an Insert operation with the primary key fields, plus an Update operation on
the remaining fields, given that the recipient can handle the fields of unknown value,
e.g., assign a Null value if possible, or a default value temporarily. Since a SyncML
message – the smallest self-contained unit conveyed in a SyncML sync action [9, 10,
11] – at least should contain a SyncML operation that corresponds to a DML opera-
tion, on the sync protocol level the transfer unit can not be smaller than the set of the
primary-key fields plus the largest field involved in an Update operation. Further
division of a message is up to lower level protocols such as HTTP or WAP, where a
message can be separated into smaller units of transmission.

To reduce redundant content transfers, we need to refine the logging granularity of
data changes, e.g., data changes are logged down to the field level. However, such a
refining measure has a prerequisite – for any specific data record, its different change
events shall not reuse any its previous change_log record, i.e., each change event shall
be noted down in a distinct set of change_log records, otherwise, it might encounter
some problems.

5 Handling Conflict

As the basis of trade-offs, we set up several principles for sync engineering, named
SE codes:

1. Avoiding any unnoticed overlay among conflict data changes except as the result
of explicit regulations.

2. The data version that is more likely preferential on semantics should dominate
others.

3. Facilities for manual reconciliation of conflicts.
4. Detected change conflicts should not automatically disappear except through a

ConR procedure.
5. A detectable conflict is better than a loss of data changes.
6. Manual ConRs should be separate from the sync session.

SE line 2 links to the auto reconciliation of conflicts (AuRC); however, its implemen-
tation depends on use-cases. To be practical, we suggest several basic rules:

1) Jurisdiction priority.
2) Diligent clients dominate lazy ones.
3) Server wins.
4) Client wins.
5) Last-writer wins, also known as the Thomas's write rule [13].

AuRC rule 1 can be applied when a jurisdiction table is available. A jurisdiction table
indicates the jurisdiction of a data object belongs to which nodes -- the principal, and
such nodes (if existing) shall always dominate their data objects. AuRC rule 2 sug-
gests the node that syncs with the server more frequently should win. The interval of
the last two syncs of a client can be used to indicate the sync frequency, which we
refer to as “the shorter interval wins”. Other rules are self-explanatory.

 A SyncML Middleware-Based Solution 315

The key aim of using AuRC is to avoid interfering in the applications on high lev-
els, smooth and speed up the conflict reconciliation, which are essential for a data
sync infrastructure. However, no AuRCs can get rid of rationality exceptions, e.g.
even for the most believable rule 1, a bad AuRC scenario can occurs when the princi-
pal's update is incorrect while others' are right. The application of AuRC rules is
situation-dependent, in other words, you need to select and prioritize them basing
what you stress. Normally, we insist on using AuRC rule 1 first, and recommend
other by the list order -- but it is still up to whether the responsibility or the data
freshness is stressed, for the former you can select AuRC rule 3 or 4, for the later you
might use AuRC rule 2 or 5.

It should be cautious to apply those AuRC rules except rule 1 since their effects are
not guaranteed. For instance, the latest writer that seldom syncs with its server proba-
bly updates the data replica based on a stale version of the data -- this update does not
reflect the due status of corresponding entity objects. In such cases, we shall apply the
“the shorter interval wins” instead. Whereas in some cases, AuRC rule 3 may lead to
an “early-writer wins” phenomenon since the earlier update from a client has become
the server's version.

Before applying the rule “server wins” we had better know where the server ver-
sion of a data object originates from: the server itself, or a client at a previous sync. In
many cases the “server wins” rule equals the “the shorter interval wins” rule, whereas
in some other cases, these two rules may have different results.

For a generic AuRC solution, the best we can do is to construct a framework with
AuRC options that can simplify the AuRC process. It is clear that no versatile AuRC
rules ever exists, manually handling of conflicts is often the last resort, therefore we
furnish GSMS with basic manually-handling facilities.

6 Sync Networking

Sync can be described as a distributed progressive version-merging transaction
(DPVT). For DPVTs a snapshot showing many intermediate replica versions on the
way implies nothing than higher frequencies of data changes and relative lags of
change propagation. In this section, we discuss the DPVT issue from the view of
networking. To this end, a few concepts are introduced:

 Unilateral policy of ConR:
A node autonomously determines the local result of ConR.

 Peer reconciliation of conflict: either node in a sync pair assumes a unilateral
policy of ConR.

 Sync graph consists of
1) Nodes that host replicas.
2) Directed edges, each connecting a pair of nodes, and indicating only a unilat-

eral propagation of data changes along the directed edge.
3) Undirected edges, each indicating a bidirectional propagation of data changes

between the two nodes it connects.
4) Arrows – degenerate directed edges, of which the tail node is deleted, indicat-

ing the node pointed to is a source of data changes.

316 H. Yang et al.

 A sync graph is called acyclic if it contains no simple loop of length three or
more (an undirected edge is equivalent to two directed edges).

 Oblivious sync action: when a sync-wave is passed through an edge of a sync
graph, the recipient gets its replica refreshed with the version the sync-wave carries,
and discards the sync-wave's origin information. Although a version identity can be
attached to identify an individual sync-wave, it is hard to devise a proper version
identity that is easily maintained and capable of sufficient description, since poten-
tially any distributed change sources can create their new versions independently
[1]. The edge undergoing an oblivious action is called oblivious edge.

With the above definitions, we can get:

Lemma 1. Conflicts can only occur at nodes with in-degree greater than 1.

Theorem 1. If a sync graph contains a directed cycle of length three or more, and the
cycle includes at least an oblivious edge, then any sync process may suffer retrover-
sion, even worse the progressive consistency may become impossible.

Corollary 1. To ensure the progressive consistency, sync-wave traces should be
acyclic.

Apparently, only the tree sync topology can tolerate oblivious edges -- our HS sync
topology has this advantage, which can be planned as a spanning tree of the network
graph [15].

7 Mobile Access

A mobile client should remember the last sync server when it syncs with a new one
somewhere else. If the client's update on the previous server s(p) has not been propa-
gated to the current server s(c), the client may trigger a new sync-wave from s(p) to
s(c), which is referred to as MiTS (Motion ignited Third-Sync). A MiTS may be
guided through a frond of a HS tree, which is referred to as a frond-MiTS. A frond-
MiTS may break the topology of HS temporarily. Seemingly, when a MiTS has a
trace of length greater than 1 (measured by the length of the corresponding shortest
path within the HS tree), named indirect MiTS, there is an option that deletes the edge
that connects node s(p) to its parent node, and replaces it with the frond connecting
s(p) to s(c), such that the sync graph is still of HS type. But this approach may involve
a lot of complex work, including the topology change's notice to every node that
should be informed and the initialization task for this new joined sync relation.
Though the initialization can be much easier if we set the sync baseline at the time a
sync pair first connects each other, i.e., subsequent incremental syncs will not con-
sider those changes that occur before the baseline, which, however, implies the need
to forget the previous diversity including the recent changes uploaded by the client to
its former server.

To this point, we shall recall the design of server nodes, in which all received sync-
waves with their origin information are recorded in the change_log with an arrival
timestamp, and the last sync time is also kept for each synced node. This enables two

 A SyncML Middleware-Based Solution 317

servers to exchange changes only that are from specific sources and satisfy a given
time condition. For an indirect MiTS, such processing is applicable if no changes
from other sources have ever overridden the data that the mobile client just uploaded
– this is normally true in a well-designed mobile user information application (subject
to Date's 5th rule: data fragmentation transparency), where each client has its proprie-
tary data fragmentation for sync. In general, for an indirect MiTS, both the s(p) and
s(c) nodes must be aware of the directions of the path connecting them in the HS tree,
which needs very complicated algorithms [15].

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000

Number of records

sync
time
 (s)

Oracle(C),Oracle(S)
SQL server(C),Oracle(S)
Oracle(C),SQL server(S)
SQL server(C),SQL server(S)

Fig. 1. Sync time of different DBMS combinations

8 Experiments

To evaluate GSMS's performance, we devised a test scheme as follows: first, compare
the sync time between homogeneous and heterogeneous distributed DBMSs; second,
test the stability of GSMS's sync performance on varied data record lengths; third,
compare GSMS's performance and Sync4j's for homogenous DBMSs considering
Sync4j can not support heterogeneous DBMS syncs, and that commercial products for
heterogeneous DBMS sync are very expensive and their resource requirements are
very high – we believe it is unfair to compare them with GSMS, a low-price-oriented
sync product. To see whether sync performance is asymmetric, we used the same OS
and hardware for both server and client nodes: Windows XP; Pentium 4 (2.66 GHz)
CPU, 1G Memory. We tested GSMS for syncs of different combinations of Oracle 9i
and SQL server 2000, Sybase ASE 15. Representative parts of the test results are
presented in Fig.1, Fig.2, and Fig.3, where, symbol (C) or (S) indicates a DBMS con-
figured as a sync client or server respectively.

The results of experiments show that, 1) the sync time is obviously linear to the
amount of data being synced, which is similar for different record lengths; 2) the sync
speed of heterogeneous DBMS is comparative to that of homogeneous DBMS; 3)
there is no significant asymmetry for GSMS's sync time; 4) GSMS has better sync
performance and stability than Sync4j.

318 H. Yang et al.

Oracle(C), SQL server(S)

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900 1000

Number of records

sync
time
(s)

Record_size=64B

Record_size=512B

Record_size=1KB

Fig. 2. Sync time of different record lengths

5

7

9

11

13

15

17

19

21

23

25

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Number of records

sync
time
(s)

Sync4J GSMS

Fig. 3. Sync comparison of GSMS and Sync4j

9 Conclusion

Better generality, flexibility and interoperability, as well as stable performance and
lower cost of time or space are on top of the list of GSMS's goals. To these ends, we
developed GSMS by means of the SyncML protocol, platform independent languages
(SQL, XML and Java), a HS sync topology, granularity controlling on sync objects,
logging techniques, hybrid scheme of content and operation transfers, and exception
handling, etc. Now GSMS is capable to sync prevalent DBMS products, such as Oracle,
SQL server, and Sybase -- the list can be easily extended in future. The key innovation
here is the GSMS middleware's working frame which is parallel to the hosting DBMS.
Subject to SyncML and based on a relaxed consistency, our solution is oriented for data
syncs between mobile units as well as static nodes, and is particularly suitable for the
applications where the data references to mobile entities are shared and updated anytime
and anywhere when the data availability is more crucial than their version consistency.

 A SyncML Middleware-Based Solution 319

Acknowledgement. This work is supported in part by the Science and Technology
Program of Guangzhou Municipal Government Grant No. 2006Z3-D3031.

References

1. Almeida, P.S., Baquero, C., Fonte, V.: Version stamps – decentralized version vectors. In:
22nd Int. Conf. on Dist. Comp. Sys. (ICDCS), Vienna, Austria, pp. 544–551 (2002)

2. Armendáriz-Iñigo, J.E., Decker, H., González De Mendívil, J.R., Muñoz-Escoí, F.D.:
Middleware-Based Data Replication: Some History and Future Trends. In: 2nd Int. Work-
shop on High Availability of Distributed Systems, Krakow, Poland, 4–8 September, pp.
390–394. IEEE-Computer Science Press, Los Alamitos (2006)

3. Date, C.J.: An Introduction to Database Systems, 7th edn. Addison-Wesley, MA (2000)
4. FUNAMBOL mobile open source project (Sync4j),

http://www.funambol.com/opensource/
5. Gallersdörfer, R., Nicola, M.: Improving performance in replicated database systems

through relaxed coherency. In: Proc. of the 21st VLDB conference, pp. 445–456 (1995)
6. Gray, J., Helland, P., O’neil, P., Shasha, D.: The dangers of replication and a solution.

ACM SIGMOD Record 25(2), 173–182 (1996)
7. Bowling, T., Licul, E.D., Hammond, V.: Global Data Synchronization — Building a flexi-

ble approach. IBM Business Consulting Services (2007), ftp://ftp.software.
ibm.com/software/integration/wpc/library/ge-5103990.pdf

8. Nikaein, N., Bonnet, C.: Topology management for improving routing and network per-
formances in mobile ad hoc networks. Mob. Netw. Appl. 9(6), 583–594 (2004)

9. OMA: SyncML Representation Protocol (Candidate Version 1.2). Open Mobile Alliance
(June 01, 2004)

10. OMA: DS Protocol (Approved Version 1.2). Open Mobile Alliance (July 10, 2006)
11. OMA: SyncML Representation Protocol–Data Synchronization Usage (Approved Version

1.2). Open Mobile Alliance (July 10, 2006)
12. OASIS: The SyncML Initiative. Technology reports hosted by OASIS (April 29, 2003),

http://xml.coverpages.org/syncML.html
13. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys 37(1), 42–81

(2005)
14. Tan, G.Z., Han, N.N., Liu, Y., Li, J.L., Wang, H.: Wireless Network Dynamic Topology

Routing Protocol Based on Aggregation Tree Model. In: Int. Conf. on Netw., Int. Conf. on
Systems and Int. Conf. on Mobile Comm. and Learning Tech (ICNICONSMCL 2006), pp.
128–132 (2006)

15. Gerard, T.: Introduction to Distributed Algorithms, 2nd edn., pp. 560–561. Cambridge
University Press, Cambridge (2000)

16. Yu, H., And Vahdat, A.: The costs and limits of availability for replicated services. ACM
Transactions on Computer Systems 24(1), 70–113 (2006)

An Efficient Authentication and Key Agreement

Protocol in RFID System

Eun-Jun Yoon1 and Kee-Young Yoo2,�

1 School of Electrical Engineering and Computer Science,
Kyungpook National University,

1370 Sankyuk-Dong, Buk-Gu, Daegu 702-701, South Korea
ejyoon@tpic.ac.kr

2 Department of Computer Engineering, Kyungpook National University,
1370 Sankyuk-Dong, Buk-Gu, Daegu 702-701, South Korea

Tel.: +82-53-950-5553; Fax: +82-53-957-4846
yook@knu.ac.kr

Abstract. Due to the very limited computing resource, storing space
and electric power supply of tag, it is a great challenge for us to design
a practical RFID protocol which is security, efficient and can be used in
the low-cost tag. In 2007, He et al. proposed an authentication and key
agreement protocol which is used in the process of communication be-
tween the low-cost tag and reader. They also proved the security of the
protocol through the extended strand space model. This paper presents
a more efficient authentication and key agreement protocol for RFID
system than He et al.’s protocol. Compare with He et al.’s protocol, the
proposed protocol reduces the computational costs as well as protocol
communication rounds to agree a shared session key between the reader
and the tag.

Keywords: Security protocol, RFID system, Authentication, Key agree-
ment, Session key.

1 Introduction

Recently, Radio Frequency Identification (RFID) [1,2,3,4,5,6,7,8,9,10,11,12] has
become a new spotlight technology for supporting ubiquitous computing envi-
ronments. In the current open network environment, RFID identifies an object
by using the radio frequency technology which is a kind of non-contact auto-
matic identification technique. It can automatically read the information from a
great deal of tags instantly. Therefore, RFID technology has been widely used
by manufacturing management, custody control, management of humans and
farm animals, arrangement of books at some libraries, etc.

The important key problem of the current RFID systems is the information
security. It means that the current RFID systems have several security prob-
lems and challenges. In the normal RFID systems, the communication channel

� Corresponding author.

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 320–326, 2008.
c© IFIP International Federation for Information Processing 2008

An Efficient Authentication and Key Agreement Protocol in RFID System 321

between the reader and the backend database is considered to be secure. How-
ever, because the communication channel between the RFID tag and the reader
is not secure channel, it can be easily attacked by passive or active attackers.
Therefore, secure RFID systems must be able to resist any kind of attack, such
as wiretap, active attack, tracking etc., and also solve the three basic security
problems including secrecy, identification and untraceability [1,2,3,4,12].

In general, RFID tags have very limited computing ability, storing space and
electric power supply. Due to these characteristics and a lot of restrictions, it is
very difficult to design of the security mechanism of the RFID system. Currently,
the most common design method is to use secure one-way hash function, bit-wise
exclusive-or (XOR) operation, PRNG (pseudo-random number generator) etc.
Up to now, most RFID authentication protocols are based on these cryptographic
operations. Therefore, in the RFID system, it is an important challenge to design
an efficient and secure protocol which can be used in the low-cost tag [1,2,3,4,12].

In 2007, He et al. [12] proposed an authentication and key agreement (AKA)
protocol which is used in the process of communication between the low-cost tag
and reader. They also proved the security of the protocol through the extended
strand space model [13,14,15]. This paper presents a more efficient authentication
and key agreement (AKA) protocol which is used in the process of communica-
tion between the low-cost tag and reader for RFID system than He et al.’s AKA
protocol. Compare with He et al.’s AKAP protocol, the proposed AKA protocol
reduces the computational costs as well as protocol communication rounds to
agree a shared session key between the reader and the tag.

This paper is organized as follows: In Section 2, we briefly review previous
He et al.’s AKA protocol. In Section 3, we presents our proposed efficient AKA
protocol for RFID system. In Sections 4 and 5, we analyze the security and the
efficiency of our proposed AKA protocol, respectively. Finally, our conclusions
are presented in Section 6.

2 Review of He et al.’s AKA Protocol

This section reviews He et al.’s AKA protocol [12]. The notations used through-
out the paper can be summarized as follows:

– A: the tag.
– B: the reader.
– IDA: the identity of the tag.
– IDB: the identity of the reader.
– kAB: the shared key between the reader and the tag.
– S: the shared secret counter between the reader and the tag which increases

after authentication.
– SK: the shared session key between the reader and the tag.
– H(x): the secure one-way hash value of x
– x ⊕ y: the bit-wise XOR operation of x and y.
– M : the plaintext message exchanged between the reader and the tag.

322 E.-J. Yoon and K.-Y. Yoo

Shared Information: H(·), ⊕
Information held by Tag A: IDA, k′

AB , S
Information held by Reader B: IDB, kAB , S

Reader
(IDB, kAB , S)

Tag
(IDA, k′

AB , S)

Request−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IDA←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Search kAB in backend database
Create session key SK

IDB , H(IDB, kAB), SK ⊕ H(kAB + 2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Check H(IDB, kAB)

?
=H(IDB, k′

AB)
Extract SK = SK ⊕ H(kAB + 2) ⊕ H(k′

AB + 2)
IDA, H(IDA, k′

AB + 1, SK)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Check H(IDA, k′

AB + 1, SK)
?
=H(IDA, kAB + 1, SK)

Shared secret session key: SK
Change kAB with H(kAB + S) ⊕ H(S)

Change IDA with H(IDA + kAB) ⊕ H(IDA + S)

Fig. 1. He et al.’s AKA protocol

He et al.’s AKA protocol is shown in figure 1 and performs as follows:

1. B → A: Request
B sends request message to A.

2. A → B: IDA

A sends its identity IDA to B.
3. B → A: IDB, H(IDB, kAB), SK ⊕ H(kAB + 2)

After receiving IDA from A, B searches the secret key kAB in the backend
database and creates session key SK. Then, B sends out {IDB, H(IDB,kAB),
SK ⊕ H(kAB + 2)} to A.

4. A → B: IDA, H(IDA, k′
AB + 1, SK)

After receiving {IDB, H(IDB, kAB), SK ⊕ H(kAB + 2)} from B, A com-
putes H(IDB, k′

AB) by its saved k′
AB. If H(IDB, kAB) = H(IDB, k′

AB),
the A successfully authenticates B and calculates H(kAB + 2) to get SK;
If H(IDB, kAB)) �= H(IDB, k′

AB), authentication fails. Then, A sends out
{IDA, H(IDA, k′

AB + 1, SK)} to B.
5. After receiving {IDA, H(IDA, k′

AB + 1, SK)} from A, B computes H(IDA,
kAB + 1, SK) to see whether they are equal or not. If they equal, the au-
thentication and the agreement on SK succeed.

6. After successful agreement on SK, both A and B change kAB with H(kAB +
S) ⊕ H(S). The following communication adopts encrypt mode, ciphertext
C = M ⊕ H(SK).

7. After the communication, both A and B change the tag A’s identity IDA

with H(IDA + kAB) ⊕ H(IDA + S) and destroy the SK.

An Efficient Authentication and Key Agreement Protocol in RFID System 323

Shared Information: H(·)
Information held by Tag A: IDA, kAB , S
Information held by Reader B: IDB, k′

AB , S

Reader
(IDB, kAB , S)

Tag
(IDA, k′

AB , S)

Generate random number rB

IDB, Request, rB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Compute SK = H(IDA, IDB , k′

AB, rB)
IDA, H(IDA, k′

AB , SK)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Search kAB in backend database
Compute SK = H(IDA, IDB, kAB, rB)

Check H(IDA, k′
AB, SK)

?
=H(IDA, kAB, SK)

IDB , H(IDB, kAB , SK)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Check H(IDB, kAB , SK)

?
= H(IDB, k′

AB, SK)

Shared secret session key: SK = H(IDA, IDB, kAB , rB)
Change kAB with H(kAB, S)

Change IDA with H(IDA, kAB, S, SK)

Fig. 2. Proposed AKA protocol

3 Proposed AKA Protocol

This section proposes an efficient AKA protocol than Lie et al.’s AKA protocol.
The proposed AKA protocol is shown in figure 2 and performs as follows:
1. B → A: IDB, Request, rB

B generates a random number rB and sends out a request message {IDB,
Request, rB} to A.

2. A → B: IDA, H(IDA, k′
AB, SK)

After receiving request message {IDB, Request, rB} from B, A computes
session key SK = H(IDA, IDB, k′

AB, rB) and then sends out {IDA, H(IDA,
k′

AB, SK)} to B.
3. B → A: IDB, H(IDB, kAB, SK)

After receiving {IDA, H(IDA, k′
AB , SK)} from A, B searches the secret key

k′
AB in the backend database and computes session key SK = H(IDA, IDB,

kAB, rB). Then, B computes H(IDA, kAB , SK). If H(IDA, k′
AB, SK) =

H(IDA, kAB, SK), the B successfully authenticates A and agreements ses-
sion key SK; If H(IDA, k′

AB, SK) �= H(IDA, kAB, SK), authentication fails.
Finally, B sends out {IDB, H(IDB, kAB, SK)} to A

4. After receiving {IDB, H(IDB, kAB , SK)} from B, A computes H(IDB, k′
AB ,

SK). If H(IDB, kAB, SK) = H(IDB, k′
AB, SK), the A successfully authen-

ticates B and agreements session key SK; If H(IDB, kAB, SK) �= H(IDB,
k′

AB, SK), authentication fails.
5. After successful agreement on SK, both A and B change kAB with H(kAB,S).

324 E.-J. Yoon and K.-Y. Yoo

The following communication adopts encrypt mode, ciphertext C = M ⊕
H(SK).

6. After the communication, both A and B change the tag A’s identity IDA

with H(IDA, kAB, S, SK) and destroy the SK.

4 Security Analysis

This section provides the proof of correctness of the proposed AKA protocol.

1. Mutual authentication and key agreement : In steps 3 and 4, by using the
secure one-way hash function H(·) [16], the reader and the tag always verify
whether the received massage authentication values (H(IDA, k′

AB, SK) and
H(IDB, kAB, SK)) are legal corresponding party’s sending message. There-
fore, the proposed AKA protocol provides the two-way mutual authentica-
tion and guarantees the secrecy of the reader and the tag.

2. Untraceability: In step 6, after finish the message communication, both the
reader and the tag always change the tag A’s identity IDA with H(IDA, kAB,
S, SK) and then destroy the shared session key SK. Therefore, the proposed
AKA protocol ensures the untraceability of the tag.

3. Computing complexity: Compared with the Hash-Lock protocol and Hash
chain protocol [1,2,3,4,5,6,7,8,9,10,11], the proposed AKA protocol simply
uses secure one-way hash function without PRNG(Pseudo-Random Number
Generator) on the tag. Only involving one hash function module, it efficiently
controls the cost of the tag. The computing complexity in the proposed AKA
protocol is at the same level of Hash-Lock protocol. Therefore, the proposed
AKA protocol is also suitable for the low-cost RFID system.

4. Replay attacks : In steps 5 and 6, both the reader and the tag always change
the key kAB and tag’s identity ID, the proposed AKA protocol can avoid
the replay attacks.

5 Efficiency Analysis

This section discusses the efficiency features of the proposed AKA protocol. The
computational costs of the proposed AKA protocol in the reader and the tag are
summarized in Table 1.

In He et al.’s AKA protocol, the computational overhead of the reader is 7 hash
operations, 3 Bit-wise XOR(⊕) operations, and 1 random number generations.
The computational overhead of the tag is 7 hash operations and 3 Bit-wise
XOR(⊕) operations. He et al.’s AKA protocol needs 4 communication rounds
for mutual authentication and session key agreement.

In our proposed AKA protocol, the computational overhead of the reader is 5
hash operations and 1 random number generations. The computational overhead
of the tag is 5 hash operations. Our proposed AKA protocol needs 3 communi-
cation rounds for mutual authentication and session key agreement.

An Efficient Authentication and Key Agreement Protocol in RFID System 325

Obviously, the proposed AKA protocol is more efficient than He et al.’s AKA
protocol.

Table 1. Computational costs of the proposed AKA protocol

Reader Tag Communication
Rounds

He et al.’s
AKA protocol

7 Hash + 3 Xor
+ 1 Ran

7 Hash + 3 Xor
+ 0 Ran

4

Proposed
AKA protocol

5 Hash + 0 Xor
+ 1 Ran

5 Hash + 0 Xor
+ 0 Ran

3

Hash: Hash operation; Xor : Bit-wise XOR(⊕) operation;
Ran: Random number generation.

6 Conclusions

This paper presented a more efficient authentication and key agreement (AKA)
protocol which is used in the process of communication between the low-cost
tag and reader for RFID system than He et al.’s AKA protocol. In the proposed
AKA protocol, the numbers of communication rounds are reduced that can be
executed in seven messages and three rounds, respectively. As a result, compare
with He et al.’s AKA protocol, the proposed AKA protocol has same security
and is more computationally efficient and communication round efficient to agree
a shared session key between the reader and the tag.

Acknowledgements

Kee-Young Yoo was supported by the MKE(Ministry of Knowledge Economy)
of Korea, under the ITRC support program supervised by the IITA(IITA-2008-
C1090-0801-0026). Eun-Jun Yoon was supported by the 2nd Brain Korea 21
Project in 2008.

References

1. Sarma, S.E., Weis, S.A., Engels, D.W.: Radio-frequency Identification: Secure Risks
and Challenges, RSA Laboratories Cryptobytes, pp. 2–9 (June 2003)

2. Ohkubo, M., Suzuki, K., Kinoshita, S.: Hash-chain Based Forward-secure Privacy
Protection Scheme for Low-cost RFID. In: Proceedings of the 2004 Symposium on
Cryptography and Information Security (SCIS 2004), Sendai, pp. 719–724 (2004)

3. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-based RFID Pro-
tocol. In: Proceedings of the 2nd IEEE International Workshop on Pervasive Com-
puting and Communication Security(PerSec 2005), Washington. DC, USA, pp.
110–114 (2005)

326 E.-J. Yoon and K.-Y. Yoo

4. Zhou, Y.B., Feng, D.G.: Design and Analysis of Cryptographic Protocols for RFID.
Chinese Journal of Computers, 582–589 (April 2006)

5. Avoine, G., Dysli, E., Oechslin, P.: Reducing Time Complexity in RFID Sys-
tems. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306.
Springer, Heidelberg (2006)

6. Kinoshita, S., Hoshino, F., Komuro, T., Fujimura, A., Ohkubo, M.: Low-cost RFID
Privacy Protection Scheme. IPSJ 45(8), 2004–2021 (2007)

7. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic Approach to “privacy-
friendly” tags. In: RFID Privacy Workshop (2003)

8. Saito, J., Sakurai, K.: Owner Transferable Privacy Protection Scheme for RFID
Tags. In: CSS 2005. IPSJ Symposium Series, pp. 283–288 (2005)

9. Han, D.G., Takagi, T., Kim, H.W., Chung, K.I.: New Security Problem in RFID
Systems Tag Killing. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K.,
Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982,
pp. 375–384. Springer, Heidelberg (2006)

10. Rhee, K., Kwak, J., Kim, S., Won, D.: Challenge-response based RFID Authenti-
cation Protocol for Distributed Database Environment. In: Hutter, D., Ullmann,
M. (eds.) SPC 2005. LNCS, vol. 3450, pp. 70–84. Springer, Heidelberg (2005)

11. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An Efficient and Secure RFID
Security Method with Ownership Transfer. In: International Conference on Com-
putational Intelligence and Security, 2006, pp. 1090–1095 (2006)

12. He, L., Gan, Y., Li, N.N., Cai, Z.Y.: A Security-provable Authentication and Key
Agreement Protocol in RFID System. In: International Conference on Wireless
Communications, Networking and Mobile Computing, 2007, vol. 1(1), pp. 2078–
2080 (2007)

13. Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand Spaces: Proving Security
Protocols Correct. Journal of Computer Security, 191–230 (July 1999)

14. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand Spaces: Why is a Security Proto-
col Correct. In: Proceedings of the 1998 IEEE Symposium on Security and Privacy,
pp. 160–171. IEEE Computer Society Press, Los Alamitos (1998)

15. Shen, H.F., Xue, R., Huangn, H.Y., Chen, Z.X.: Extending the Theory of Strand
Spaces. Journal of Software, 1785–1789 (October 2005)

16. Schneier, B.: Applied Cryptography Protocols, Algorithms and Source Code in C,
2nd edn. John Wiley & Sons Inc., Chichester (1995)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 327–338, 2008.
© IFIP International Federation for Information Processing 2008

Grid Service Discovery Based on Cross-VO Service
Domain Model

Jing-Ya Zhou, Jun-Zhou Luo, and Ai-Bo Song

School of Computer Science and Engineering, Southeast University,
210096 Nanjing, P.R. China

{jyz,jluo,absong}@seu.edu.cn

Abstract. The diversity of grid service originates from heterogeneous and dy-
namic nature of grid, and it poses a great challenge to grid service discovery.
How to discover services satisfying users’ multiple requests meanwhile avoiding
negative effect derived from requests and updates becomes increasingly impor-
tant in grid environment. This paper proposes a Cross-VO (Visual Organization)
service domain model for compensating deficiencies that traditional approaches
exhibit in flexibility of discovery. Service domain is developed to make advan-
tage of similarity among services. In this model each service domain is con-
structed through all services that have similar function in VOs and nodes in ser-
vice domain connect according to unstructured P2P system. It breaks through
resource restriction in a VO and satisfies users’ requests in great extent while
achieves favorable scalability and flexibility. Both theoretical analysis and ex-
perimental results indicate that this model performs efficiently in high discovery
success ratio, low average hops and messages even with low density and small
TTL. Compared with non-domain grid system via the same discovery success
ratio, our model outperforms it in both average hops and messages.

Keywords: Service Discovery, Service Domain, P2P.

1 Introduction

OGSA (Open Grid Service Architecture) [1] is a service oriented grid architecture that
derives from computational grid and combining with Web Services forms a grid service
oriented hierarchical integration architecture. In OGSA the virtualization of resources
is embodied in the form of grid services and these services distribute in large scale grid
environment. Hence, how to discover grid service satisfying users’ requirements ef-
fectively becomes key issue in grid study.

VO is defined as a set of individuals and/or institutions defined by sharing rules and
they share resources and cooperate with each other through a way of under controlled
[2]. According to the collaboration, the service type provided by local VO usually meet
users’ requirements in higher probability, but service instances may not satisfy re-
quirements due to resource restriction in one VO or higher requirements addressed by
users. There are a large number of grid services with same type or similar functional
property across VOs, but traditional discovery approaches do not take this case into
account. Consequently, we propose Cross-VO service domain model for grid service

328 J.-Y. Zhou, J.-Z. Luo, and A.-B. Song

discovery. Service domain is composed of many services with similar functions. Effi-
cient discovery strategy is designed based on the model too. Both theoretical analysis
and experimental results indicate that the model we proposed can reduce updating load
effectively and increase discovery success ratio.

The rest of this paper is organized as follows: Section 2 gives related work on ser-
vice/resource discovery in grid environment. Section 3 introduces Cross-VO service
domain model, then service discovery strategy is described. In section 4 we make
performance analysis on theory. The experimental results and analysis is present in
section 5. In section 6 we conclude the paper and look forward to future work.

2 Related Work

Grid service/resource discovery is somewhat special because of high dynamics in grid
environment. Many studies have made their efforts to solve this problem.

Globus [3] uses MDS (Monitoring and Discovery Service) [4] to realize tree-like
metadata directory service based on LDAP [5]. MDS is in charge of monitoring and
discovery of grid resources, however, it focuses on service data query while lack of
support for service type discovery. UDDI (Universal Description Discovery and Inte-
gration) is a specification for distributed Web-based information registries for Web
services [6]. It allows services to be published, and subsequently searched, based on
their interface, but it does not an automatic mechanism for updating the registry as
services change. A. ShaikhAli, etc. present UDDIe as an extension to UDDI, which
supports QoS (Quality of Service) dynamic registry and enable discovery of services
based on QoS [7]. Unfortunately, it is a centralized model, in which central server in
charge of all queries and inclines to failure in case of overload. Meanwhile frequent
QoS update results in huge network overhead due to dynamic nature of grid. In this
paper, we suggest that similar services should be aggregated together in a service do-
main, and then multitude dynamic update is restricted within the range of domain.

P2P shares many common features with grid, for example, both of them are large
scale system constructed for the purpose of resource sharing; resources or services in
system exhibit characteristics of strong autonomy, heterogeneity and high dynamics;
nodes may participate or withdraw at any moment. P. Trunfio, etc. propose that two
systems be converged for the discovery research, and three kinds of P2P systems are
also analyzed in [8]. As to unstructured P2P system, A. Iamnitchi, etc. propose a fully
decentralized P2P architecture for resource discovery in grid environment. In this
architecture all nodes are equivalent and no one act as central server. The discovery
process is the execution of traversal among all nodes, because of no central server it
avoids single-point failure, nevertheless, it will appear high latency as the growth of
network size. Chord [9, 10] is the first structured P2P system to be proposed. The
discovery process emulates the binary search, thus requires O (logN) hops and mes-
sages. Compared with unstructured P2P system, structured P2P system is more scal-
able in terms of traffic load, but need to have strong self-organization capabilities in
order to be able to maintain rigid structure. Hybrid P2P system has been proposed to
overcome the drawbacks of aforesaid two systems while retaining their benefits.
Hybrid P2P system is composed of two kinds of nodes: ordinary nodes and super

 Grid Service Discovery Based on Cross-VO Service Domain Model 329

nodes, in which several ordinary nodes are administrated by one super node and super
nodes constitute a fully decentralized structure. There is no central server storing
index structure, so it is no need to worry about the appearance of server bottleneck.
Compared with unstructured P2P system, it has much faster speed for synchronization
of index information and does not result in large traffic. Y. Gong, etc. put forward
VEGA resource discovery framework in [11]. In this framework, several resource
routers constitute management domain and are connect to backbone through border
router. VEGA constructs a hybrid-like hierarchical P2P structure, and uses layered
clustering approach to aggregate resource information. Through interaction between
layers resource information are updated continuously. This architecture brings
enlightening significance to our study. The concept of management domain is similar
to VO in management perspective, however, it lacks of consideration for clustering
management of similar resources.

3 Cross-VO Service Domain Model

3.1 Introduction to the Model

Service domain aggregates many types of service with similar function. It is similar to
the conception of VO in architectural perspective, whereas, other than VO the former
pays more attention to clustering of service providers of specific application field.
Cross-VO service domain model is a hybrid hierarchical P2P structure. In the model,
VO can be composed of several service domains while single service domain may be
covered by several VOs. There are a VOSR (VO Service Registry) and many LDSRs
(Local Domain Service Registry) located in VO. LDSR takes charge of registry of
service information belong to a certain type, so LDSR represents a kind of service type,
and the service information here is the detailed service description including static and
dynamic information. As to provisional services we use factory pattern for registry,
namely providers only register service handle for activating factory to LDSR, but no
context and resources are allocated. The service handle associate with service type, and
create service instances when needed. For further description of similarity, we intro-
duce service compatibility to depict the substitutable relationship between different
service types. If service type A is compatible with service type B, it indicates that user’s
requirements for instance of A can also be satisfied by instance of B. Apparently the
introduction of service compatibility enhances discovery performance. In addition, it is
notable that compatibility has no reflexivity. VOSR takes charge of recording and
maintaining service type etc. static information gathered from LDSRs in local VO.
LDSRs belong to a service domain are collected together to constitute a complete
service domain. In service domain, LDSRs as nodes connect with one another ac-
cording to unstructured P2P system.

Figure 1 shows an example of Cross-VO service domain model. Service domain III
is covered by three VOs namely VO A, B and C, while VO A is composed of part of
three service domains namely service domain I, II and III. On the VO level of this
model, VOSRs of all VOs constitute an unstructured P2P system, then they correspond
to super nodes in hybrid P2P system. In each VOSR we set a cache for recording

330 J.-Y. Zhou, J.-Z. Luo, and A.-B. Song

Fig. 1. Cross-VO Service Domain Model

service domain information published from neighbors and publish information of its
own to neighbors periodically.

3.2 Service Discovery Strategy

In service discovery process, service request is dealt with according to distributed
transmit strategy and describes as follows:

1. Users send request to local VOSR via LDSR.
2. VOSR receives request and makes some analysis, then lookup in service type list to

determine if there exists item that match service domain that required service be-
longs to, if true, forward it to corresponding LDSR and go on, or else go to 5.

3. LDSR receives request and compares it with its own registry service type to deter-
mine whether they are the same or the registry service type is included in the com-
patibility list of required service, if not true, go to next step, or else continue to carry
out service instance match in LDSR according to QoS etc. state information, if
match success, then return discovery success and service information, otherwise, go
to next step.

4. If request forwarding hops exceed TTL (Time To Live) return failure, otherwise,
forward request to all its neighbors and go to 3.

5. Lookup cache for further match, if there exist item matching the required service
domain, then forward request to the corresponding neighbor and go to 2, or else
forward request to all neighbors and go to 2.

The above discovery strategy can be divided into two parts: discovery on VO level and
discovery within service domain. The first part aims at finding service domain that
required service belongs to. As service domain crosses VOs, each LDSR can be re-
garded as entrance from VO to service domain, it is equivalent to say that service
domain has entrances among multiple VOs. It not only improves discovery success
ratio, but avoids instability caused by node failure. After finding the service domain, it
will go to the second part. The second part is responsible for finding satisfied service
instance in service domain according to service type, state requirement etc.. It breaks
through service resources restriction in a VO, meanwhile, it also solves the problem of
single-point failure and load balancing. When VOSR of VO A fails or overloads,

 Grid Service Discovery Based on Cross-VO Service Domain Model 331

LDSR 1 belonging to A will sends request to any of its neighbor LDSR 2 in the same
domain instead of forwarding to VOSR of A, then LDSR 2 sends request to its own VO
B and continue the following discovery process.

4 Performance Analysis

It is demonstrated that Internet topology follows power-law [12]. We assume that both
inter-VO topology and intra-domain topology in Cross-VO service domain model obey
power-law and theoretical analysis is given below.

Table 1. Symbols and Definitions

Symbol Definition

NVO Number of VOs

ND Number of service domains

ND-LDSR Average number of LDSRs in a service domain

PSUC(h,t) Discovery success ratio within h+t hops

T(h,t) Average hops under discovery success

M(h,t) Average messages forwarded by single request

PVO(h) The probability of finding service domain that required within h hops

PD(t) The probability of finding satisfied service instance within t hops

T(h) Average hops under service domain discovery success within h hops

T’(t) Average hops in domain under service discovery success within t hops

M(h) Average messages forwarded by single request within h hops on VO level

M’(t) Average messages forwarded by single request within t hops in domain

Firstly, we take the first part of discovery process into consideration. According to
lemma 2 in [12], the number of edges E on VO level, can be estimated as a function of

NVO and the rank exponent R:
VOR+1

VO

1 1
E (1)N

2(R+1) N
= − , then substitute it into

VO

2E
d

N
= , it goes into

R+1
VO

R+1
VO

N 1
d

(R+1)N

−= . d represents average degree on VO level, it can

be seen that when
VON → +∞ , d tends to be constant 1

R+1
. Supposing that we search

service with certain type x and x belongs to domain I. There are two possibilities to find
domain I, let us donate by PI the possibility that I is in the service type list, and PIC the
possibility of finding I in cache. Then, the possibility of finding I on VO level is shown
to be:

VO-I I ICP 1 (1 P)(1 P)= − − − (1)

332 J.-Y. Zhou, J.-Z. Luo, and A.-B. Song

Since I is covered by nI VOs, we have: I
I

VO

n
P

N
= . The cache size of VOSR is set as

its degree, we have got d, so
D

D
IC

D D

N 1

 d N d
1 P

N N

 d

−⎛ ⎞
⎜ ⎟ −⎝ ⎠− = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

, substitute it to equation (1),

we obtain:

VO I D
VO-I

VO D

(N n)(N d)
 P 1

N N

− −= − (2)

We use the following equation to calculate PVO(h):

d

h+1d 1

d 1
VO VO-I VO VO-IP (h) 1 (1 P)(1 P (h-1)) 1 (1 P)

−
−= − − − = − − (3)

Equation (3) shows that PVO(h) initially increases quickly as TTL h increases, then as
PVO(h) approaches 1 the increase amplitude slow down gradually. Meanwhile, the
increasement of PVO-I brings higher PVO(h), and we can improve PVO-I via heightening
nI, so nI is also proportional to PVO(h). Let pi donate the probability of finding service

domain at exactly the ith hop, then PVO(h) is given by:
VO i

0

P (h) p
h

i=
=∑ . Now consider the

probability of finding service domain at exactly the ith hop under service domain dis-
covery success within h hops should be

i VOp / P (h) , we have:

h h-1
i

i h VO h
i=1 i=1VO VO VO

p 1 1
T(h) i ip hp (P (h 1)T(h 1) hp)

P (h) P (h) P (h)

⎛ ⎞= = + = − − +⎜ ⎟
⎝ ⎠

∑ ∑

Substitute
h VO VOp P (h) P (h 1)= − − to above equation and replace PVO(h) with equation

(3), we obtain:

id 1
h d 1

VO-I
i=1VO VO

h 1
T(h) h (1 P)

P (h) P (h)

−
−

= − + −∑ (4)

By analyzing equation (4), we conclude that both h and PVO-I have relationship with
T(h), increasing h exclusively may not always lead to continuous increase of T(h).

When the required service domain appears in service type list, discovery process go
to the second part——intro-domain discovery, and then there is no messages generated
on VO level, if matching in cache, a message is forwarded to corresponding neighbor.
Otherwise, messages are forwarded to all neighbors. We let

VO-I1 Pa = − , so M(h) is

given by:

I ICM(h) 1 (1 P)P (d dm(h 1))a= − + + −� (5)

where m(h-1) are messages generated within the following h-1 hops and can be cal-
culated by following equations:

 Grid Service Discovery Based on Cross-VO Service Domain Model 333

h 1
i

I IC
i=0

m(h 1) 1 (1 P)P (d dm(h 2)) (d) (1 b) 1a a
−

− = − + + − = + −∑�

and we rewrite equation (5) as:

hd((d) b 1)
M(h) b

d 1

a a

a

− −= +
−

 (6)

Equation (6) indicates that node degree corresponds to an exponential number of
messages, and degree of node in WAN tends to constant, so decreasing messages re-
quires reducing TTL h. But on basis of analysis on equation (3), reducing h may result
in drop of success ratio largely. Therefore, we need to take both factors into
consideration.

Given that we find service domain, then we reach intra-domain discovery process.
Different from VO level, we do not set cache in LDSR for considering similarity of
services in domain and update load. According to lemma 4 in [12], the average number
of nodes within t hops is the function of hot-plot exponent H, where E' is the average
number of edges in domain:

HD-LDSR

D-LDSR

N 2E'
NN(t) t 1

N

+= −

Supposing that the required service type was S, and the number of nodes that provide

this kind of service was NS, then the density of type S is S
S

D-LDSR

N
D

N
= . We let mc as the

number of service types that are compatible with S. The probability that request can
find at least one satisfied service instance within t hops is given by:

m 1c

i
i 1

NN(t) D

D MP (t) 1 (1 P)

+

=
∑

= − − (7)

where PM represents the probability of instance match. PD(t) shares the same change
trend with PVO(h)in equation (3). Combining equations (3) and (7) we obtain:

h+1d 1

d 1
SUC VO-I DP (h,t) 1 (1 P P (t))

−
−= − − (8)

From equation (8), it is known that increasing match probability PM, service density
DS, and number of compatible services mc will increase PD(t), and further increase
PSUC(h,t).

In terms of approaches for calculating average hops on VO level, we calculate in-
tra-domain average hops as:

id 1
t d 1

M
i=1D D

t 1
T'(t) t (1 P)

P (t) P (t)

−
−

= − + −∑ (9)

334 J.-Y. Zhou, J.-Z. Luo, and A.-B. Song

Average hops under discovery success are described as:
h 1

SUC
i=1SUC

1
T(h,t) h T'(t) P (i,t)

P (h,t)

−

= + − ∑�
(10)

T’(t) and t in equation (9) are not strictly inverse proportion relationship, T’(t) will
keep stable on a range as PD(t) increases, and then as to T(h,t) we pay more attention to
the impact of T(h).

When service request be satisfied, a success message will be returned, or else return
failure message. Average messages within t hops are given by:

M MM'(t) 1 P (d' d'm'(t 1))(1 P)= + + − −�

Where m’(t-1) are messages generated within the following h-1 hops and d’ is average
degree in domain. Let

M' 1 Pa = − , with a boundary of condition, we have:

t 1
t 1 ('d') 1

m'(t 1) ('d') ('d' 1 ')
'd' 1

a
a a a

a

−
− −− = + + −

−
�

and then

t 1 t2('d') '('d') 'd' ' 1
M'(t) 1 ' 'd'(1 m'(t 1))

'd' 1

a a a a a
a a

a

+ − − + −= − + + − =
−

 (11)

Through decreasing 'a , namely increasing PM, we can get smaller average messages.
In terms of above approaches, overall average messages is calculated by:

VO-I VO-IM(h,t) P M'(t) (1 P)(d dg(h 1))= + − + −

where
VO-I VO-Ig(h-1) P M'(t) (1 P)(d dg(h 2))= + − + −

then
h

VO-I
VO-I

d((d) P M'(t) 1)
M(h,t) P M'(t)

d 1

a a

a

− −= +
−

 (12)

Above theoretical analysis indicates that discovery ratio, average hops and average
messages are all mainly determined by three factors: node degree d or d’, TTL h or t and
probability of service instance match PM. As network scale enlarge, node degree tends
to be constant, if instance match probability keep unchanged, then it will be needed to
choose suitable TTL to keep balance between discovery success ratio and average hops
and messages.

5 Experiment

In this section, experimental environment is presented including our parameters setup.
We also present metrics as well as the experimental results for performance evaluation.

5.1 Experimental Environment

SEUGrid is a grid system established for AMS-02 (Alpha Magnetic Spectrometer-02)
project [13]. The AMS project is a large scale international collaborative project with

 Grid Service Discovery Based on Cross-VO Service Domain Model 335

the goal of searching in space for missing matter, antimatter and dark matter on the
international space station. SEUGrid currently is used to deal with minitype vast data
processing in MC (Monte Carlo) production. MC production aims at producing mass
simulated data for particles analysis. Because there are many kinds of services is of-
fered for different particles analysis, service discovery is needed to guarantee per-
formance. All machines registered in SEUGrid are equipped with one or more type(s)
of services. Cross-VO service domain model proposed in this paper is implemented in
SEUGrid, and a service discovery strategy based on the model is also applied to it. We
conduct our experiment in SEUGrid environment.

We divide experiment into two parts, the first part is used for performance com-
parison among different parameters in our model, only a kind of service type is con-
sidered; in the second part we compare our model with non-domain grid system, and
requests are generated randomly without service type restriction. As to compatibility,
parts of service types have one or two compatible service types.

Network topology affects performance of discovery strategy to some extent. We
construct inter-VO topology according to power-law formula in [14]

2.489exp(8.03)*df d −= and intra-domain topology according to
2.489' exp(6.47)*df d −= and the node degree ranges from 2 to 10. Ten kinds of do-

mains with two types of service in each one is registered to each VO, then there are
10*2=20 LDSRs included in each VO. Each LDSR is registered with a type of service
instances, and the number of instances distributes in the range of 10 to 20.

10

2
voN 1000d

d

f
=

= ≈∑
10

D-LDSR
2

N ' 200d
d

f
=

= ≈∑

The number of VOs is about 1000, and we set up 100 domains, hence, the average
number of LDSRs:

ND-LDSR=(1000*10*2)/100=200

We perform MC production on specified machines with high performance and divide
generated data into many data blocks according to certain rule, then data blocks are
transferred to several machines in each VO. Some of these machines are chosen ran-
domly as request nodes every time.

5.2 Metrics

Three metrics are considered in the experiment. The former two are from user’s per-
spective, while the latter is from the system’s perspective.

1. Discovery Success Ratio: the percentage of satisfied requests of total requests, and
can be divided into service domain discovery success ratio and intra-domain dis-
covery success ratio respectively.

2. Average Hops: the mean of hops under service discovery success. We use average
hops instead of response time as metrics to express search efficiency. It is divided
into average hops on VO level and intra-domain average hops.

3. Average messages: the mean of messages generated by single request. We also
divide it into average hops on VO level and intra-domain average hops.

336 J.-Y. Zhou, J.-Z. Luo, and A.-B. Song

5.3 Results

In order to avoiding influence of randomness, each group of experiment repeats for 100
times and all results are averaged. The discovery process is divided into two parts.
Figure 3 shows that discovery success ratio of both parts initially increase quickly as
TTL increases, when TTL reaches a certain value, the increase amplitude slow down
and keep stable. This is because the number of domains arrived increases as TTL in-
creases at initial time, afterward, the overlapping of service domains strengthened as
TTL increases. Then the increase amplitude of number of domains slow down. When
conduct intra-domain discovery, we set compatibility number as 1, and make com-
parisons between different densities. We find that the higher density the higher success
ratio is, and success ratio become 1 when t is 3. Accordingly, when t comes to 3, overall
success ratio is mainly dependent on service domain discovery success ratio.

The average hops in Figure 4 has the same trend with what Figure 3 reflects, and the
points that change the trend are same too. This result is consistent with theoretical

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

(a)

P
vo

(h
)

h

 nI=100

 nI=135

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

(b)

P
D
(t

)

t

 Ds=0.15
 Ds=0.25

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

(c)

 nI=100

 nI=135

t=3P
S

U
C
(h

,t)

H=h+t

Fig. 2. Success Ratio and TTL

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

(a)

 nI=100

 nI=135

T
(h

)

h

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

(b)

T
'(t

)

t

 Ds=0.15
 Ds=0.25

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c)

 nI=100

 nI=135

t=3

T
(h

,t)

H=h+t

Fig. 3. Average Hops and TTL

0 2 4 6 8 10
0

10

20

30

40

(a)

M
(h

)

h

 nI=100

 nI=135

0 1 2 3 4 5
0.0
0.5
1.0
1.5
2.0

2.5
3.0
3.5

(b)

 Ds=0.15
 Ds=0.25

M
'(t

)

t

0 2 4 6 8 10 12
0

10

20

30

40
 nI=100

 nI=135

t=3

(c)
H=h+t

M
(h

,t)

Fig. 4. Average Messages and TTL

 Grid Service Discovery Based on Cross-VO Service Domain Model 337

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

(a)

P
S

U
C

(h
,t)

H=h+t

 vo-domain
 non-domain

t=3

0 2 4 6 8 10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(b)

 vo-domain
 non-domain

t=3

T
(h

,t)

H=h+t

0 2 4 6 8 10
0

20
40
60
80

100
120
140
160
180
200

(c)

M
(h

,t)

H=h+t

 vo-domain
 non-domain

t=3

Fig. 5. Cross-VO Service Domain vs. Non-domain grid system

analysis. Compared with Figure 5 (a) and (b), we find that increasing density is one of
the effective ways to reduce average messages, especially for large number of services
and wide distribution.

In the second part, as to non-domain grid system, we conduct searching by flooding
on VO level and set cache size as node degree, but take no consideration of compati-
bility, in addition, we set t as 3. The other settings including topology and services
information registered are same with service domain model. As Figure 6 describes, in
(a) when H≤5, non-domain grid system keeps higher success ratio. The reason can be
concluded that h is limited to 2 which do not arrive at equilibrium point, after exceeding
the point, our model exhibits better performance. (b) indicates that non-domain grid
system requires larger average hops under same discovery success ratio. Meanwhile, in
service domain model, forwarding requests are restricted in a domain constructed by
services with compatibility. This consequently reduces average messages greatly as (c)
shown.

6 Conclusion and Future Work

This paper introduces service domain into grid system to make advantage of similarity
among services as well as avoiding single-point failure and appearance of massive
messages，and proposes Cross-VO service domain model. The whole discovery
process is composed of service domain discovery and intra-domain discovery. The
introduction of compatibility enhances discovery power of potential similar service
resources, thus achieves favorable flexibility. We analyze factors on performance, and
do experiment in SEUGrid to evaluate these factors, and compare it with non-domain
grid system. The experimental results show that Cross-VO service domain model we
proposed can achieve high discovery success ratio, low average hops and messages.

Grid environment equipped with high dynamics requires updating frequently for
correctness guarantee, especially for information in cache in our model. The per-
formance impact of cache update will become our future work.

Acknowledgments. This work is supported by National Natural Science Foundation of
China under Grants No. 90604004 and 60773103, Jiangsu Provincial Natural Science
Foundation of China under Grants No. BK2007708, Jiangsu Provincial Key Laboratory
of Network and Information Security under Grants No. BM2003201 and Key

338 J.-Y. Zhou, J.-Z. Luo, and A.-B. Song

Laboratory of Computer Network and Information Integration (Southeast University),
Ministry of Education under Grants No. 93K-9.

References

1. Foster, I., Kesselman, C., Nick, J., et al.: The physiology of the grid: An open grid services
architecture for distributed systems integration (2002), http://www.globus.org/
research/papers/ogsa.pdf

2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal Supercomputer Applications 15(3), 200–222 (2001)

3. Globus Toolkit, http://www.globus.org
4. Czajkowski, K., Fitagerald, S., Foster, I., Kesselman, C.: Grid Information Services for

Distributed Resource Sharing. In: International Symposium on High Performance Distrib-
uted Computing (HPDC 2001), Proceedings, Redondo Beach (2001)

5. Howes, T., Smith, M.: A scalable, deployable directory service framework for the internet.
Technical report, Michigan (1995)

6. Universal Description Discovery and Integration (UDDI), http://www.uddi.org/
pubs/IruUDDITechnicalWhitePaper.pdf

7. ShaikhAli, A., Rana, O., Al-Ali, R., Walker, D.: UDDIe: An extended registry for web
services. In: The Workshop on Service Oriented Computing: Models, Architectures and
Applications, pp. 85–89 (2003)

8. Trunfio, P., Talia, D., Papadskis, H., et al.: Peer-to-Peer resource discovery in Grids: Models
and systems. Future Generation Computer Systems 23(7), 864–878 (2007)

9. Stoica, I., Morris, R., Karger, D., et al.: Chord: A scalable Peer-to-Peer lookup service for
internet applications. In: ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM 2001), pp. 149–160 (2001)

10. Krishnamurthy, S., EI-Ansary, S., Aurell, E., Haridi, S.: A Statistical Theory of Chord
Under Churn. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640.
Springer, Heidelberg (2005)

11. Gong, Y., Dong, F., Li, W., Xu, Z.: VEGA Infrastructure for Resource Discovery in Grids.
Journal of Computer Science & Technology 18(4), 413–422 (2003)

12. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationship of the internet to-
pology. In: ACM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM 1999), pp. 251–262 (1999)

13. Fisher, P., Klimentov, A., Mujunen, A., Ritakari, J.: AMS Ground Support Computers for
ISS mission. AMS Note 2002-03-01 (2002)

14. Lu, D., Dinda, P.: Synthesizing Realistic Computational Grids. In: ACM/IEEE Super-
computing Conference (SC 2003), Phoenix (2003)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 339–348, 2008.
© IFIP International Federation for Information Processing 2008

Ontology-Based Semantic Method
for Service Modeling in Grid

Bin Cheng 1,2,*, Xingang Wang 1,3, and Weiqin Tong 1

1 School of Computer Engineering and Science, Shanghai University,
Shanghai 200072; China

2 College of Mathematics, Physics and Information Engineering, Zhejiang Normal
University, Zhejiang Jinhua 321000, China

3 College of Information Engineering, Zhejiang University of Technology,
Hangzhou 310014, China

cb@shu.edu.cn, wxg@zjut.edu.cn, wqtong@mail.shu.edu.cn

Abstract. Grid is a newly developed technology for complex system with
large-scale resource sharing, wide-area communication, multi-institutional col-
laboration, etc. A service-based approach for Grid can improve the extensibility
and interoperability. In this paper, Service Oriented Grid Hierarchical Archi-
tecture is proposed within the OGSA framework, which gives a new approach to
build the Grid. The need of semantic component in Grid to discover and describe
the resources is analyzed and a Star Model of Ontology is introduced to describe
services semantically. A Grid Service Matchmaking Semantic method is pre-
sented on the base of the ontology.

Keywords: Grid service, Ontology, Grid.

1 Introduction

Grid is a newly developed technology for complex system, which has been widely
adopted in scientific and technical computing. It enable us to share, exchange, discover,
select and aggregate geographical or Internet-wide distributed heterogeneous resources-
such as sensors, computers, databases, visualization devices and scientific instruments.
In Grid where resources are generally owned by different people, obtaining and man-
aging these resources is not a simple task for communities or organizations with varied
administration policies and capabilities. And the resource sharing and the problem
solving in dynamic multi-institutional virtual organizations are difficult[2].

Grid technologies have been evolving toward an Open Grid Services Architecture
(OGSA) in which a Grid provides an extensible set of services that virtual organizations
can aggregate in various ways[1]. However, OGSA has not indicated how to build the
Grid architecture and the platform directly based on service. A novel hierarchical struc-
ture of grid is proposed in this paper which can be described as an extension of the current
Grid. It is a service oriented architecture in which entities provide services to one another
under various forms of contract. The services are given well defined meaning, better
enabling computers and people to work in cooperation semantically under ontology.

* Corresponding author.

340 B. Cheng, X. Wang, and W. Tong

The rest of the paper is organized as follows: Section 2 proposed the service-oriented
hierarchical structure of Grid. The critical technologies of the service layer are dis-
cussed in Section 3, such as the Grid Ontology, the service discovering, the capability
evaluating and the service composing. Section 4 concludes the paper highlighting the
advantages and future scope of this research work.

2 Service Oriented Grid Hierarchical Architecture

Open Grid Service Architecture (OGSA)[1], oriented Grid Service (GS), discussed in
Global Grid Forum (GGF) has been evolving since it was proposed in the early 2002.
According to [1], the service abstraction may be used to specify the access to compu-
tational resources, storage resources, and networks, in a unified way. But it does not
discuss how to model the Grid architecture based on service. We present a novel ap-
proach to integrate Web service and Grid computing by researching the Grid functional
model and OGSA[4].

First, Grid is concerned with coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations. Protocols are the building block of
the function sharing and cooperation. And the service mechanism is the approach to
achieve the protocols. So the service is an ideal form of resource abstraction.

Second, the Service Oriented Architecture (SOA) is introduced to manage the re-
sources in the virtual organizations (VOs). SOA builds a uniform environment of service
computing, which is composed of the resource service, the common service and the
application service, in the VO layer of Grid. And the resource sharing transforms to a
mapping from an abstract resource to a resource service. The cooperation becomes the
interaction among different service entities. The job scheduling converts into the life-
cycle management of service entities, such as creation, maintenance and negotiation.

Third, the method of workflow modeling based on Web service emphasizes the
ability of the need description and studies the description language of Grid job. It works
for adapting the request of application and the environmental change.

Last, the mechanism of the Grid Service security and the combination of QoS and
OGSA are set up, and implements the credible Grid environment based on safe Grid
Service and satisfies the request of Grid application.

The Service Oriented Grid Hierarchical Architecture (Fig.1) introduces a method to
build a Grid system based on service semantically and analyzes the relationship of
every layer. It describes further details of the Grid functional model based on the Grid
Service technology.

(1) Resource Layer
Resources are the infrastructure of the Grid computing and the execution of the scien-
tific task finally[7]. Resources not only include the physical resources such as sensors,
computers, databases, scientific instruments, etc., but also the logical resources such as
network bandwidth, software, application service, etc. So the resource layer highlights
the distributed, autonomous and heterogeneous characteristic of the Grid environment.

(2) Service Layer
The service layer focuses on solving the resource sharing and cooperation for sup-
porting the service oriented development, assignment, processing and testing of Grid
application. The detailed components of the Services layer are presented as follows:

 Ontology-Based Semantic Method for Service Modeling in Grid 341

Fig. 1. Service Oriented Grid Hierarchical Architecture

a) Grid Service Pool
It includes all the elementary services or complex services, which are registered, and

builds the environment of the Grid Service, e.g. the uniform description of service.
b) Grid Service Oriented Security Mechanism
It offers such function as the security support, such as identification, authorization,

access control, secure communication, etc. to the Grid Service.
c) Grid Service Oriented QoS Mechanism
It provides the QoS guarantee to the VOs directly and the QoS negotiation to the

services. It can satisfy the nonfunctional request, e.g. service capability, reliability,
management, etc.

d) Monitor and Management of Service Resource
It can analyze the service request, break apart the computing task, cooperate and

schedule the subtask, offer the information service, etc. It also can provide some
common functions such as instantiation of the service, internal status maintenance,
lifecycle negotiation and so on.

e) Grid Service Ontology
It is consisted of a global ontology and several local ontologies. Every local ontology

records the local services’ concepts and the relationships of these concepts. If it is
difficult to solve a problem by one ontology, a global mapping mechanism is used to
integrate the semantic information of other ontologies. It is helpful to improve the
accurate service matchmaking and support the user or service to maintain and search
the local ontologies.

342 B. Cheng, X. Wang, and W. Tong

f) Grid Service Matchmaking Engine
It supports the service discovering, the capability evaluating, the queuing strategy

and the service composing semantically. The mapping from the task to the service is
under the ontology. It coordinates the interaction among the services and embodies the
cooperative solution of multiple services.

(3) Grid Service Oriented Tools Layer
It offers the user interface and the uniform access interface, e.g. Grid Service portal.
There are programming model, test and simulation tools, monitoring and management
tools and workflow modeling tools in this layer. All the tools and API can simplify the
development, assignment, test and management of the Grid application.

(4) Grid Application Layer
This layer is based on service. These applications are not limited to scientific com-
puting and mass data processing.

3 Critical Technologies of Grid Service Layer

The Service Layer is the core layer of the system in the Fig.1. The heterogeneous and
distributed services, which are viewed as the standard software components, can be
discovered, issued, composed and scheduled by the uniform programming environ-
ment[2][10]. The protocol group of Web service makes the open, scalable and standard
infrastructure implement and interact among the services[6]. We introduce the domain
ontology to improve the ability of automatic discovery and accurate location and solve
the semantic heterogeneity. The global ontology and the local ontologies are integrated
to share the semantic information. The service is described by OWL-S. UDDI and
WS-Inspection are extended semantically to realize the service discovery and dynamic
binding. We implement the service scheduling based on SOAP and its security exten-
sion. The system supports the cooperation in security based on WS-Inspection speci-
fication. And the service composing is realized under ontology technology. Compared
with the 5-layer Grid system[1], the service is viewed as the unified resources in Fig.1.
The novel architecture presented in the paper combines with the previous work of Web
service. It is built in the autonomous and credible Grid Service environment and solves
the resource connection, sharing and assembling.

3.1 Grid Ontology Architecture

The concept of Ontology, which originates from philosophy, has been widely em-
ployed by several research communities[8][9]. The use of ontology for the explication
of implicit and hidden knowledge is a possible approach to overcome the problem of
semantic heterogeneity. The interoperability and the semantic information integration
are the key application of ontology[11][5]. An ontology provides semantics by defining
concepts and properties, and by describing axioms. It includes machine-interpretable
definitions of basic concepts in the domain and their relations. And it has features of
domain-specificity, standardization, and evolution.

Now the research on distributed, heterogeneous Grid Service has begun to exploit
ontologies in order to support semantic interoperability, because lots of Grid Service

 Ontology-Based Semantic Method for Service Modeling in Grid 343

providers issue their Grid Service in a distributed environment. The shared definitions
and understanding are required to discover a Grid Service [13]. It will be convenient to
combine the simple Grid Services into a complex Grid Service and evaluate the capa-
bility of the Grid Service based on the ontology[14][15].

Ontology is built in the following ways and we choose the last one to model the
ontology, which is called the Star Model of Ontology (Fig.2c)[8]:

1. Single ontology approach (Fig.2a): a typical example of this app roach is SIMS.
This approach is susceptible to change in the information sources which can affect the
conceptualization of the domain represented in the ontology.

2. Multiple ontology approach (Fig.2b): the OBSERVER system is an example of
this app roach. In practice the inter-ontology mapping is very difficult to define, be-
cause of the many semantic heterogeneity problems which may occur.

3. Hybrid ontology approach (Fig.2c): a combination of the two preceding ap-
proaches is used. A local ontology is built for each source schema, which is not mapped
to other local ontologies, but to a global shared ontology. It avoids the disadvantages of
single ontology or multiple ontology approaches.

Definition 1 (Ontology). Ontology is built on OWL(web ontology language). It is
expressed as a 4-tupel: O={C, R, I, A}, where C is a finite set of concepts; R is a finite
set of relations; I is a set of instances; A is a set of axioms, expressed in a logical
language over Τ which is T=C∪R∪I, and it can be used to infer knowledge from an
existing one.

Fig. 2. The three possible ways for using ontologies

Definition 2 (Grid Service). Grid Service is a special Web service. It is expressed as a
4-tuple: GS={CA, UA, IN, OUT}, where CA is a set of common attributes that all Grid

344 B. Cheng, X. Wang, and W. Tong

Services have, e.g. service name, service providers, edition, URI; UA is a set of unique
attributes that a service has individually; IN is a set of parameters, describing the input
interface; OUT is a set of p parameters, describing the output interface.

We can describe the semantic character of an essential service by binding the in-
terface and the service attributes. The service provider and the service requester can be
ensured to call the Grid Service based on semantic.

Definition 3 (Service associating). Given two Grid Services GS1 and GS2,
IN1⊆OUT2 indicates that GS1 is associated with GS2, expressed as GS1←GS2. The
symbol ⊆ means the set IN1 covered by the set OUT2. And the SD(GS1, GS2) is the
degree of the association between GS1 and GS2 based on semantic.

Definition 4 (Ontology mapping). Ontology mapping is the task of finding semantic
relationships between entities (i.e. concept, attribute, and relation) of two ontologies.
The ontology mapping system is a 3-tuple OM={G, L, M}

(1)G is the global conceptual schema, expressed over an alphabet Ag. It defines the
global semantics and provides the global view for users.

(2)L is the local conceptual schema, expressed over an alphabet As. L defines the
local semantics for data source.

(3)M is the mapping between G and S, constituted by a set of assertions which define
the relationship between global conceptual schema and local conceptual schema.

The similarity of two entities among different ontologies or between the registered and
requested concepts is defined as a similarity function: sim(ei, ej)∈[0, 1] (0 means ei is
different from ej , 1 means they are synonymous). If there are more than one matching
candidates in several ontologies for ei, the one with the highest similarity is selected as
its matched entity.

Since the ontologies evolve as time goes by, the global ontology and the local on-
tologies for the Grid Services should have a flexible infrastructure that has an ability to
reflect the changes in ontologies[8][12].

A flexible ontology management approach is proposed for discovery and description
of Grid Service capabilities supporting ontology evolution whose goal is to enhance the
interoperability among Grid Services. In this approach, concepts and descriptions in an
ontology are defined independently, and they are connected by relationships. In addi-
tion, the relationships are updated based on real-time evaluations of ontology users in
order to flexibly support ontology evolution. A bottom-up ontology evolution means
such environment that allows ontology users to evaluate impact factors of concepts in
an ontology and that results of the evaluation are reflected to the modification of the
ontology. So the ontology management framework not only enables semantic discov-
ery and description of a Grid Service capability but also supports a bottom-up ontology
evolution based on the evaluations.

3.2 Grid Service Matchmaking Semantically

The matchmaking approach proposed in this paper adds semantics to the Grid Service
concepts through OWL-S. The service matchmaking algorithm infers knowledge from
the description to discover closely related services. We use user-defined weighted QoS

 Ontology-Based Semantic Method for Service Modeling in Grid 345

Fig. 3. Framework of the Star Model of Ontology

factors to evaluate the capability and obtain the suitable services, then combine these
elementary services as a complex one that meets the user’s requirements.

The matchmaking approach has 3 modules, which are discovering module, evalu-
ating module and composing module, based on semantics.

(1) Discovering module
We use the semantic similarity between the requested capability and that of the regis-
tered ones to discover the service initially. The semantic similarity is determined
among concepts from different ontologies directly, named SIM. SIM = Σ(NCS, ACS,
SRS) = sim(e1, e2), where NCS is the similarity in the name of concept, ACS is the
similarity in the attribute of concept, SRS is the similarity of semantic relation and sim
is defined in Definition 4. Semantic relation includes two kinds of relationships. They
are hierarchical relation and inhierarchical relation. The service discovering module
can eliminate irrelevant services from being compared and improve the accuracy of the
final results.

(2) Evaluating module
The chief criterion for evaluating whether the Grid Service is practicable is the Quality
of Service(QoS). Users may have different QoS requirements with respect to the ser-
vice requested. So we use weighted QoS factors to evaluate the capability. Six impor-
tant factors are extracted to describe the QoS needed by a service requester, which are
CPU cycles(CPU), network bandwidth(NB), memory space(MS), system reliabil-
ity(SR), packets lost(PL), I/O bandwidth(IOB). These factors can be computed, e.g.
NB=1－(RequiredNB/AvailableNB). RequiredNB is the minimum network bandwidth
and AvailableNB is the network bandwidth available at the service provider. Therefore,
the value of RequiredNB/AvailableNB must be low. It means the service provider can
offer a good QoS for bandwidth.

346 B. Cheng, X. Wang, and W. Tong

The parameters required by the service request such as RequiredNB are obtained
from the service requester. The requester specifies the priorities of every QoS pa-
rameters, i.e. weights (W). Then computes overall QoS requested by the user as shown:

AQoS = Σ(w1*CPU, w2*NB, w3*MS, w4*SR, w5*PL, w6*IOB)

The user can choose the single service or the complex service which has the maximum
value of AQoS.

(3) Composing module
The ability to compose services (and applications) based on currently available ser-
vices, current context, and dynamically defined objectives and goals is critical[3][14].
While the existing systems do address many aspects of composition, they do not
completely address the challenges of dynamic service composition based on semantic.
We present a dynamic composition model which is to autonomically synthesize the
Grid Services from the pool of available services, which are chosen after service dis-
covery and QoS evaluation, to satisfy dynamically defined composition objectives,
policies and constraints.

Definition 5 (Directed Constraint Graph). Directed constraint graph (DCG) is a
directed chart G=<V,E>. And V={GS1, GS2,..., GSn} is the set of the nodes, which
represent Grid Services, in the graph. E is the set of directed edges. Every (vi, vj) E
indicates that there is a directed association between vi and vj. And the value of the
edge is SD. The first node of the graph is the element IN of the request service. And the
last node is the element OUT of the request service.

Fig. 4. Directed Constraint Graph

So the service composing can be described in the form of DCG through service as-
sociating analysis. And choose one pathway, which can satisfy the user’s request and the
constraints of the directed graph, to be the composed service. This model is based on the
semantic similarity of concepts and the semantic relativity of the service under ontology.
It can not only meet the function of service request, but also has high efficiency.

For example, GSr is the Grid Service of the request service(Fig.4). We find the GS1,
GS2 and GS3 are associated with GSr by computing SD. So there are e1, e2 and e3 to
indicate the association and the values are SDs. The other nodes and edges of the DCG
are analogized in this way. Then it is found that there are 2 pathways (e1→e4→e5,
e3→e6→e8) that can reach the end point GSr(OUTr), which is the request out. We
choose one of them that has high ∑AGoS. ∑AGoS is the sum of all nodes’ AGoS in the
pathway.

 Ontology-Based Semantic Method for Service Modeling in Grid 347

4 Conclusions and Future Work

In this paper Service Oriented Grid Hierarchical Architecture is proposed within the
OGSA framework. Its supporting environment and the critical technologies are intro-
duced. The ontology technique is used to solve the problem of describing and discov-
ering Grid Services semantically in a heterogeneous grid environment. Then we can
discover the suitable Grid Service quickly and accurately and compose the elementary
service into the complex service under ontology. The service composing is a method
that finds a suitable pathway in a directed graph. We discuss the problems associated
with managing ontologies in Grid and present the mapping mechanism to share the
semantic information in distributed environment. There are still many problems that
need to be solved, such as learn local ontology from data source, semi-automatic on-
tology mapping, similarity computing optimization, validity checking on Grid Service
composition, etc. Future work will investigate these issues more deeply.

References

1. Foster, I., Kesselman, C.: Grid services for distributed system integration. Computer 35(6),
37–46 (2002)

2. Chaol, K.-M., Younas, M.: Analysis of grid service composition with BPEL4WS. In: 18th
International Conference on Advanced Information Networking and Applications, AINA
2004 V1, pp. 284–289 (2004)

3. Derong, S., Ge, Y., et al.: Heterogeneity resolution based on ontology in web services
composition. In: Proceedings of the IEEE International Conference on E-Commerce
Technology for Dynamic E-Business, CEC-East 2004, Proceedings of the IEEE Interna-
tional Conference on E-Commerce Technology for Dynamic E-Business, CEC-East 2004,
pp. 274–277 (2004)

4. Chun-Ming, H., Jin-Peng, H.: Web Service-based Grid Architecture and Its Supporting
Environment. Journal of Software 15(7), 1064–1073 (2004)

5. Le-Yun, P., Xiao-qiang, L.: Evaluation of Multistrategy Classifiers for Heterogeneous
Ontology Matching On the Semantic Web. Journal of Dong Hua University 22(2), 55–61
(2005)

6. Zou, D., Qiang, W.: A formal general framework and service access model for service grid.
In: Proceedings - 10th IEEE International Conference on Engineering of Complex Com-
puter Systems, pp. 349–356 (2005)

7. Wolfgang, M., Julio, A.J., Ricardo, A.: An ontology- and resources-based approach to
evolution and reactivity in the semantic web. In: Meersman, R., Tari, Z. (eds.) OTM 2005.
LNCS, vol. 3761, pp. 1553–1570. Springer, Heidelberg (2005)

8. Pernas, A.M., Dantas, M.A.R.: Using ontology for description of grid resources. In: Pro-
ceedings - 19th International Symposium, pp. 223–229 (2005)

9. Tangmunarunkit, H., Decker, S.: Ontology-based Resource Matching in the Grid[EB/OL]
(2006), http://epicenter.usc.edu/docs/iswc03.pdf

10. Ludwig Simone, A., Reyhani, S.M.S.: Semantic approach to service discovery in a Grid
environment. Web Semantics 4(1), 1–13 (2006)

11. Ling, L., Yu-jin, H., et al.: Semantic-based clustering method to build domain ontology
from multiple heterogeneous knowledge sources. Journal of Donghua University (English
Edition) 23(2), 1–7 (2006)

348 B. Cheng, X. Wang, and W. Tong

12. Changjun, H., Xiaoming, Z., et al.: Ontology-Based Semantic Integration Method for Do-
main-Specific Scientific Data. In: Eighth ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp.
772–777 (2007)

13. Pastore, S.: Introducing semantic technologies in web services-based application discovery
within grid environments. In: Fourth European Conference on Universal Multiservice
Networks, pp. 22–31 (2007)

14. Xiandi, Y., Ning, H.: Ontology based approach of semantic information integration. Journal
of Southeast University (English Edition) 23(3), 338–342 (2007)

15. Rajagopal, S., Thamarai Selvi, S.: Semantic grid service discovery approach using clus-
tering of service ontologies. In: IEEE Region 10 Conference, pp. 414–553 (2007)

J. Cao et al. (Eds.): NPC 2008, LNCS 5245, pp. 349–360, 2008.
© IFIP International Federation for Information Processing 2008

A Scalable and Adaptive Distributed Service Discovery
Mechanism in SOC Environments

Xiao Zheng, Junzhou Luo, and Aibo Song

School of Computer Science and Engineering, Southeast University,
210096 Nanjing, P.R. China

{xzheng,jluo,absong}@seu.edu.cn

Abstract. Current researches on service discovery mainly pursue fast response
and high recall, but little work focuses on scalability and adaptability of large-
scale distributed service registries in SOC. This paper proposes a solution using
an agent based distributed service discovery mechanism. Firstly an unstructured
P2P based registry system is proposed in which each peer is an autonomous
registry center and services are organized and managed according to domain
ontology within these registry centers. Secondly, an ant-like multi-agent service
discovery method is proposed. Search agents and guide agents cooperate to dis-
cover services. Search agents simulate the behaviors of ants to travel the net-
work and discover services. Guide agents are responsible to manage a service
routing table consisting of pheromone and hop count, instructing search agents’
routing. Experimental results show that the suggested mechanism is scalable
and adaptive in a large-scale dynamic SOC environment.

Keywords: multi-agent system, P2P network, service discovery, ant algorithm.

1 Introduction

In Service-Oriented Computing (SOC), in order to discover and locate a target service
efficiently, services should be published to a service registry. The registry stores
metadata documents of Web services, including functions, parameters and providers.
The service registry is a bridge between service consumers and service providers.

Currently used services registries, for example those based on UDDI standard, of-
ten adopt a centralized or hierarchical architecture, which are not suitable for very
large SOC environments for their intrinsic poor scalability features. The design of
decentralized registry systems is therefore urgent. Recent UDDI v3 [1] introduces a
mechanism of registry affiliation. Affiliated registries could share data with each
other in a controlled environment. Peer-to-peer(P2P) based registry is also sug-
gested[2-6] to support distributed service discovery. The P2P registry architectural
style has no centralized registry to store the metadata of services. Each peer in the
P2P registry is a registry center that maintains data independently, and data can be
shared among peers. Recent researches almost focus on data partition and manage-
ment among peers, and designing a high efficient service discovery algorithm. Little
work considers scalability and adaptability of the registry system when thousands of

350 X. Zheng, J. Luo, and A. Song

peers exist in it. However, the problem of scalability and adaptability must be solved
for distributed computing.

Under an environment consisting of thousands of registries, service discovery
would involve locating the correct registry in the first place and then locating the
appropriate service within that registry. This paper focuses on solving the first chal-
lenge of finding appropriate registries. We propose an adaptive distributed services
discovery mechanism for large-scale dynamic SOC environments. The main contribu-
tions in this paper are:

(1) We propose an agent based distributed service registry system, which is based
on unstructured P2P architecture. Moreover, domain ontology is adopted to partition
and manage services in registry centers.

(2) We examine a decentralized and self-organizing approach inspired by ant be-
haviors. According to dynamic variable pheromone level, agents can adapt to the
changes of registry topology and registered services.

2 Related Work

Distributed service publication and discovery models have been extensively studied in
previous work. Many researches [2-6] suggest using P2P network as the infrastructure
of service registries. Current P2P systems can be classified into two types, namely
unstructured and structured. Structured designs are likely to be less resilient in the
face of a very transient user population, precisely because the structure required for
routing is hard to maintain when nodes joining and leaving at a high rate. In contrast,
the unstructured networks are ad-hoc and the placement of data is completely unre-
lated to the overlay topology. The advantage of such systems is that they can easily
accommodate a highly transient node population. In addition, unstructured networks
support many desirable properties such as simplicity, robustness, low requirement for
network topology and supporting semantic searching.

METEOR-S [2] is a scalable P2P infrastructure of registries for semantic publica-
tion and discovery of Web services. This work uses an ontology-based approach to
organize registries into domains, enabling domain based classification of all Web
services. The mapping between UDDI registry and ontology is used to organize a P2P
network. Under this mechanism, the content of the registry is tightly coupled with the
topology of P2P network, which leads to their synchronization and less flexibility.
Reference [3] suggests a P2P and semantic web based service discovery mechanism
where deployment and publication of a Web service are bound together. This mecha-
nism omits obvious publication process of services, and could get dynamic various
QoS of services in time. However, due to lacking registry, the response time of ser-
vice discovery certainly delays, and its efficiency must lower. Reference [4] proposes
a P2P based service discovery mechanism by creating an agent called P2P Registry as
a middleware within DNS and peers. Each peer is able to register and discover desir-
able services automatically through current DNS within a short duration. In this
scheme, centralized DNS is used to locate the target, which is similar to the super
node in hybrid P2P systems.

 A Scalable and Adaptive Distributed Service Discovery Mechanism 351

3 A P2P-Based Distributed Service Registry System

In order to support dynamic adaptive service discovery, an agent based unstructured
P2P registry system is introduced, which is illustrated in figure 1. The whole registry
system is composed of numerous self-organized registry centers that are intercon-
nected through unstructured P2P network style. Three types of agents are used to
manage registry centers and discovery services, namely registry agent, search agent
and guide agent (RA, SA, GA for short respectively). RA, resided in registry centers,
is responsible for registering and indexing service metadata, etc.. SA is a kind of mo-
bile agent, accepting discovery task and responsible for searching target services over
the registry system. GA, also resided in a registry center, is a guide who helps SA to
select a best route. GA maintains a service routing table which records routes from the
local registry to service domains.

Domain Next hop Pheromone

...

Service Routing Table

Registry Center (Registry Agent)

Dj

Di

Di

Search Agent

Guide Agent

Rk

Rj

Ri phi

phj

phk

Domain Web Service

Web Services in Registry

Dj

Di

WSji

WSik

WSij

Hop count

Hi

Hj

Hk

Fig. 1. An overview of the distributed service registry system

Widely adoptive UDDI standard only supports keyword-based search. However,
the accepted view is that semantic organization and management should be supported
in near future, which should guarantee the accuracy of search result and offer founda-
tion to automatic service composition based on semantics. Our suggested registry
center adopts a domain ontology based two-level structure.

Domain ontology could support the common understanding about domain knowl-
edge, and eliminate different meanings of the same word or sentence [8]. In SOC, a
service always belongs to one or more particular domains. For example, car rental
services belong to a traffic and transport domain, and hotel booking services belong to
a travel domain. Consequently, registered services can be categorized in terms of
which domain them belong to. Each registry center manages and clusters services by
means of domain ontology.

A service can be defined as WS = (I, O). I is a set of inputs, and O is a set of out-
puts. For WSi(Ii,Oi), if Ii and Oi belong to domain Di semantically, WSi will be regis-
tered in Di. Once the registry center does not contain such Di , a new domain Di will
be added. As illustrated in figure 1, registered services are organized as a directory
tree. When querying a service WSij, a conclusion can be drawn rapidly through judg-
ing whether it belongs to one domain of the registry center or not. Consequently, the

352 X. Zheng, J. Luo, and A. Song

query process can be divided into two stages. At the first stage, which domain the
target service belonging to should be judged; at the second stage, the service could be
queried within its domain. Index technique can be used to improve the speed of query.
Semantic technique can be used to judge similarity between a service and a domain.
All of these techniques can be referred in the study of information retrieval and se-
mantic web, which will not be studied in this paper.

4 Agent-Based Ant-Like Service Discovery

Ant algorithm, based on behaviors of the real ant, is initially applied to find the short-
est paths in a graph [7] and, later on, successfully applied to combinatorial problems
[9] or network routing [10]. The principle of this class of artificial ant algorithm is to
translate into algorithmic models some of the real ants’ biological principles. They use
pheromone remaining in paths to indirectly exchange the path information between
ants, whereas former ants passing by the path, which represents some experience
knowledge, deposit such pheromone. In ant algorithm, the positive feedback of global
updating reduces the search scope, and the hidden negative feedback retains the
scope.

Our work also follows these thoughts. For each query request, n SAs are generated
which emulate ants to execute a query task. In distributed service registry architec-
ture, different service providers usually register many services with the same func-
tions but different QoS properties. Service consumers do not generally find one
particular service, but a number of services belonging to a given service class, so that
they can subsequently select the service which is the best suited for their applications.
A service class can be seen as a set of services satisfying a given set of syntactic and
semantic constraints on the values of service metadata parameters. The objective of
SAs is therefore to find target services as many as possible under particular con-
straints.

4.1 Behaviors of Agents

SA roams over the P2P network and queries the services belonging to its own ontol-
ogy domain. Each SA carries some property information including a target service,
TTL(Time to live), hop count and Tabu (tabu table). TTL records the life-span of SA,
and hop count is the number of nodes (registry centers) that a SA has passed after
discovering the latest target service. Tabu contains all nodes having been visited. SA’s
behaviors are described as follows. Corresponding algorithms will be introduced in
section 4.2.

(1) Roam. In order to find target services, SA moves among nodes by a predefined
routing policy. Each node maintains a service routing table that directs SA to select
next hop. As illustrated in figure 1, a service routing table includes four fields, namely
target domain, next hop, hop count and pheromone. The first record in service routing
table showed in figure 1 represents that if target services belong to domain Di, Ri will
be the next hop where the distance from local to the node having Di is hop count Hi,
and the amount of pheromone on this exit is phi. In order to avoid visiting the same
node again, SA records the visited nodes in its Tabu. At last the hop count is updated.

 A Scalable and Adaptive Distributed Service Discovery Mechanism 353

(2) Querying services. SA queries target services at the visited node. The two stage
query approach has been simply introduced above.

(3) Generating and sending pheromone updating messages. A message includes
service domain and hop count. There are two different kinds of updating messages. If
SAs having found successfully, the massage of reporting a target service registered in
this node is going to be flooded to all its neighbors. In addition, if SA’s hop count is
not equal to zero, a message containing this hop count will be sent to the local GA.

(4) Life-span control. SA has a life-span, which could control the number of SAs
roaming in the network and insure there are no more SAs moving ceaselessly after a
query is over. When a SA is created, its TTL is set to an initial life value. After this,
TTL will be updated by a particular rule. The number of SAs roaming over the net-
work can therefore be controlled. In addition, by adjusting the initial life value, SA’s
searching radius can be increased or decreased. Because SA can destroy itself after its
TTL is decreased to zero, its life-span could be managed by itself.

GA mainly maintains the service routing table. Its behaviors are described as follows:

(1) Listening and receiving updating messages. GA always listens in pheromone
updating messages from SAs or neighbor nodes’ GAs.

(2) Managing service routing table. Updating messages are accepted and analyzed.
If the service domain specified in the message could be found in the routing table,
pheromone and hop count in the corresponding item will be updated. Conversely, if
the domain does not exist, a new item will be added. Hop count contained in the ac-
cepted updating message will replace the hop count in the current item. Due to the
dynamic variety of service availability, pheromone is always decreased periodically.
The pheromone, which does not increase after a long time, would be given out at last.
It denotes that no service exists in the corresponding routing, or no requirements
about searching this kind of services exist. If an item’s pheromone is zero, it will be
deleted from the table.

(3) Diffusion of pheromone updating message. When resided node joins a network,
or a new service is registered successfully, GA floods messages to all its neighbors
with hop count equal to 1.

4.2 Ant-Like Service Discovery Approach

4.2.1 Search Agent Routing Policy
When SA queries the current service routing table, two cases would appear. The first
case is that target services do not belong to any service domains in the table. In such
situation, SA would select a neighbor randomly. The second case is that one or more
domains can match the target services. Here SA would make a decision in terms of the
amount of pheromone and hop count in corresponding items. The amount of phero-
mone denotes the number of ever-successful search along the route, and hop count
denotes the distance to target services. SA moving to the neighbor with more phero-
mone may get higher success rate, and selecting less hop count may get shorter re-
sponse time. Therefore, two factors should be considered together. Because pheromone
represents rather a probability than certain knowledge, a roulette wheel selection algo-
rithm [11] is used to select a neighbor. After adopting this method, the path with fewer
pheromones also has the chance to be chosen, even if the probability is smaller.

354 X. Zheng, J. Luo, and A. Song

In the second case, the probability of SA k at node i choosing to move to neighbor j
is defined as

)(}][][{

,0

,
)),(/1)(,(

)),(/1)(,(

),(

kTabuDomaintsRTtNexthoptNlet

Nj

Nj
uihopsuiph

jihopsjiph

jip

i

Nu
k

−∈∧∈=

⎪
⎪
⎩

⎪⎪
⎨

⎧

∉

∈
= ∑

∈

λ

λ

(1)

where ph(i,j) denotes the amount of pheromone from node i to node j, hops(i,j) de-
notes the hop count which is the distance to target service domain while selecting j as
the next hop, and 0>λ is a parameter which determines the relative importance of
pheromone versus distance. s denotes the target service, RTi denotes the service rout-
ing table in node i, t[Domain] denotes the projection on field Domain, t[Nexthop]
denotes the projection on field Nexthop. Tabu(k) is the Tabu of SA k.

4.2.2 Pheromone Generation and Updating
Pheromone, which directs SA to select routing, plays an important role in SA routing.
Thus, how to generate and update pheromone is a key to influence algorithm per-
formance. In the following cases, pheromone will be generated or updated.

(1) SA will deposit pheromone on the path passed by if it has discovered a target
service. Its generated new pheromone will be added to the pheromone remained on
the path previously. Assume that SA enters local node i from neighbor n, and let
ph(i,n) denotes the pheromone amount on the path from local node i to neighbor n, a
updating rule is give by formula (2)

1)1(),(),(pniphniph ∆−+⋅= αα (2)

where)1,0(∈α and 1p∆ is a constant.

(2) When having found a target service at node n, SA would diffusion pheromone
to all neighbors. Receiving a message of pheromone updating, GA positioned on its
neighbor would update pheromone in the corresponding item of its service routing
table by formula (3).

)(,)1(),(),(2 nJmpnmphnmph ∈∆−+⋅= ββ (3)

where)1,0(∈β and 2p∆ is a constant. m is a element of the set of node n’s

neighbors. J(n) is the set of node n’s neighbors.
(3) For each item of the service routing table, an update process will be done in pe-

riod by formula (4).

),(),(niphniph ⋅= ρ (4)

where)1,0(∈ρ is pheromone decay parameter. Thus if a neighbor is always not be

visited, its pheromone level will be closer to zero.
(4) If a new node enters the P2P network or new services have been registered in a

node, the local GA will send update messages to all its neighbors. In this situation,
neighbors’ service routing tables will be updated by formula (3).

 A Scalable and Adaptive Distributed Service Discovery Mechanism 355

4.2.3 SA’s Hop Count Updating
When SA searches a target service, it records the hop count from latest discovered
service to current position. The initial value of SA’s hop count is zero, which repre-
sents it has not discovered any target services. When SA finds a target for the first
time, it will set hop count to 1. Hereafter, once discovering a target service at a node,
SA will reset hop count to 1; otherwise add 1 to current hop count. Such hop count is
contained in pheromone updating messages and is used to update service routing
table. Hop count HCk is updated by (5)

⎪
⎩

⎪
⎨

⎧

∉∧>+
∈

∉∧=
=

)(0,1

)(,1

)(0,0

iCsHCHC

iCs

iCsHC

HC

kkk

k

kk

k (5)

where sk denotes the target service of SA k, and C(i) denotes the service set of node i.

4.2.4 Life-Span Control
Our algorithm uses TTL to control SA’s life-span. When a SA is created, its TTL will
be set to an initial value. Hereafter at each visiting node, the SA’s TTL will be up-
dated. If SA does not find target services, its TTL will be decreased; otherwise it will
not be changed so that the SA can visit more nodes. If all neighbors are in the Tabu,
the SA’s TTL will be set to zero. Such SA will not move any more and be killed.
When SA k at node i, the update rule of its TTLk is:

⎪
⎩

⎪
⎨

⎧

⊆
∈
∉−

=
)()(,0

)(

)(,1

kTabuiJ

iCsTTL

iCsTTL

TTL kk

kk

k ， (6)

where the meanings of sk and C(i) are similar to formula (5).
Based on discussion above, the routing selection algorithm is described as follows.

Algorithm 1. Routing selection algorithm. SA runs this algorithm at each node.

1: Input Seach Agent SA, target servies WS, local node
lnode, pheromone increment ph1 and ph2;
2: SendUpdatePheromoneMessage to lnode with
SA.HopCount and ph1;
3: SA.UpdateHopCount;
4: SA.Tabu.Add(lnode);
5: IF Other SAs having the same task had arrived THEN
6: SA.TTL--;
7: ELSE
8: SA.Query(WS);
9: IF (NoFound) THEN
10: SA.TTL--;
11: ELSE
12: FOREACH nodei IN lnode.neighbour
13: SendUpdatePheromoneMessage to nodei with
msg.hc=1 and ph2;
14: END IF

356 X. Zheng, J. Luo, and A. Song

15: END IF
16: IF All lnode.neighbour in SA.Tabu THEN
17: SA.TTL=0;
18: ELSE
19: SA.Nexthop =RouletteSelect(lnode);
20: END IF

5 Simulation and Performance Analysis

This section evaluates performance of our approach. For the sake of focusing on SA’s
search performance over the P2P based registry, assume that once SA reaches a node
owning target services, it could discover all of them.

Repast 3(REursive Porus Agent Simulation Toolkit) [12] is a multi-agent simula-
tion platform for large-scale systems. Our simulation program is based on Repast and
implemented in C#. Simulated network topology is a Power-law random graph[13].
Each registry center has at most 20 kinds of service domains, and each domain has at
most 50 kinds of services. 200 services are randomly generated and registered in each
registry center. The class of ant-based algorithms often uses a number of tuning pa-
rameters. Unfortunately, these parameters are not directed by scientific rigor theory
until now [14]. According to repeating experimentation and guidelines in reference
[15], the parameters are set as α=0.9,β=0.85,ρ=0.95,∆p1=0.25, and ∆p2=0.35 in our
algorithm. Parameter λ determines whether pheromone or hop count more affects
routing selection. In a static environment, where network topology and metadata of
registered services are generally stable, hop count could truly reflect the position of
registered services. In contrast, the mechanism of updating pheromone plays an im-
portant role for adapting the algorithm to dynamic environments. Therefore, in static
simulations, λ is set to 0.5, in order to magnify the effect of hop count, but λ=2 in
dynamic simulations. The simulation is based on a discrete time model and all events
are executed in discrete time steps, called tick.

Two groups of experiments are designed to evaluate our algorithm roundly. The
first group examines the performance of the algorithm, and how the number of SAs
and TTLs affect its performance. The second compares our algorithm to two classical
resource discovery algorithms in P2P systems.

We focus on scalability and adaptability in a large-scale dynamic environment, and
use the following metrics:

 Recall is the ratio of the number of discovered target services to the total num-
ber of target services, which shows the algorithm’s search capability.

 Search performance-price ratio is average number of target services discov-
ered by a search agent or query message. It is calculated as (number of discov-
ered target services)/(number of query messages or SAs).

5.1 Performance Analysis

First experiments run in a static system in which the number of registry center, net-
work topology, and the kind and number of services are invariable. Figure 2 shows a
scenario, in which there lacks pheromone initially, and SAs repeatedly search a same

 A Scalable and Adaptive Distributed Service Discovery Mechanism 357

target service later. There are 175 target services randomly distributed in the system
of 1000 registry centers. 15 SAs with initial TTL=20 are generated to search target
services. A search round is the span from the generation to death of all SAs for the
same target. Figure 2(a) is a real-time statistic graph, which shows the trend of the
number of SAs and discovered services along with running time. At the first search
round, recall is very low and reaches 26%. However from the second round, a higher
recall can be reached in few time steps. At the tenth round, a recall of about 83% can
be reached. This is because at the beginning there is no pheromone in the service
routing table, so SA blindly selects routing. After several rounds, pheromone has
accumulated which could direct SA to search the registry with higher probability of
owning target services. Summing up the data in figure 2(a), figure 2(b) shows the
comparison between recalls of different rounds. Because Figure 2 illustrates that a fast
convergence and a high recall can be reach in a short time in our algorithm.

Figure 3 shows how different system size affects the recall. As the number of regis-
try centers increasing, recall decreases slowly. Because the number and initial TTL of
SAs do not change, the degressive trend is rational. Figure 4 shows how the number
and initial TTL of SAs affect the recall when the number of registry centers is 4000.
Increasing the number of SAs can improve search scope, and increasing initial TTL
can increase search radius. One of approaches of improving recall is therefore to in-
crease the number and initial TTL of SAs, especially when the system size increases.
Figure 2, 3, and 4 show that our algorithm is feasible for large-scale service discovery
systems.

0 10 20 30 40 50 60 70 80 90 100 110

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

R
ec

al
l (

%
)

Time (tick)

 round 1
 round 2
 round 3
 round 9

 (a) (b)

Fig. 2. Results of repeated running. (a) Trend of the number of discovered services and SAs. (b)
Comparison between recalls of different rounds.

In order to examine the performance of our algorithm in dynamic environments,
the experiment simulates a dynamic system where the number of registry centers is
varying. For the sake of getting stable statistic, assume that there are no changes dur-
ing a search round and randomly increase or decrease 10% registry centers between
search rounds. Figure 5 is a dynamic output graph of the simulation program when the
number of registry centers is 500. It shows the changing number of discovered ser-
vices and total services after 10% registry centers having been increased. Figure 5(b)

358 X. Zheng, J. Luo, and A. Song

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

100

R
ec

al
l (

%
)

Num. of registry centers

 Num. of SAs=15
 Initial value of SAs=20
 rounds of search <10

10 15 20 25 30 35 40 45 50 55
30

35

40

45

50

55

60

65

70

75

80

85

90

95

R
ec

al
l (

%
)

Num. of SAs

 Init val of SA=15
 Init val of SA=20
 Init val of SA=25
 Init val of SA=30

Fig. 3. Recall versus the number of registry
centers

Fig. 4. Recall versus the number of SAs

(a) (b)

Fig. 5. Experiments in a dynamic environment. (a) Process of multi-round search. (b) Trend of
recall.

shows that the recall decreases to 85%, but is back to former 90% after 3 rounds.
Obviously, our algorithm is adaptable to the change of the system scale.

5.2 Comparison with Classical Algorithms

Gnutella[16] and Random Walks[17] are classical resource discovery algorithms,
which are often used to P2P based service discovery model. Figure 6(a) shows the
comparison of search performance-price ratio under different system scales. Since
Gnutella’s flooding style generate many new SAs at each node, and k-Random Walks
generate k-1 new SAs, numerous SAs will be generated in order to get high recall. As
a result, their search performance-price ratio is very low. Conversely, as our algorithm
does not generate new SAs during the process of searching, a high search perform-
ance-price ratio is easily gained.
Again, as showed in Figure 6(b), through the pheromone-based instruction, our algo-
rithm can obtains high recall after visiting about 30% registry centers. However, the
other two algorithms’ recall is geometric proportion to visited registry centers. This is
because our algorithm has the knowledge about which registry probably having target
services. The other algorithms only depend on magnifying search scope to improve
recall.

 A Scalable and Adaptive Distributed Service Discovery Mechanism 359

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

S
ea

rc
h

p
er

fo
rm

an
ce

-p
ric

e
 r

at
io

Num. of registry centers

 Our algorithm
 Gnutella-like
 2-Random walk

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 R
ec

al
l

Visited-total registries ratio

Our algorithm
 Gnutella-like
 2-Random walk

(a) (b)

Fig. 6. Comparison between three algorithms. (a)Search performance-price ratio versus the
number of registry centers. (b) Recall versus the visited to total ratio of registry centers.

6 Conclusions and Future Work

This paper proposes an agent based distributed service discovery mechanism for a
P2P based registry. Under this model, search agents and guide agents cooperate to
discover services. Search agent simulates the behaviors of ant to travel the network
and discover services. Guide agent is responsible to manage a service routing table.
The self-organizing and decentralized nature of the involved algorithms, along with
the analysis of performance results obtained with variable system sizes, shows that the
proposed mechanism is scalable and adaptive and can be adopted in a large-scale
dynamic computing environment.

Recently some two layered and virtual domain based P2P models have been sug-
gested to construct a distributed registry, which try to organize and manage services
more efficiently. A service discovery approach under such infrastructure will be stud-
ied and implemented in near future.

Acknowledgments. This work is supported by National Natural Science Foundation
of China under Grants No. 90604004 and 60773103, Jiangsu Provincial Natural Sci-
ence Foundation of China under Grants No. BK2007708, Jiangsu Provincial Key
Laboratory of Network and Information Security under Grants No. BM2003201 and
Key Laboratory of Computer Network and Information Integration (Southeast Uni-
versity), Ministry of Education under Grants No. 93K-9.

References

1. Clement, L., Hately, A., Riegen, C.V., Rogers, T.: Universal Description Discovery & In-
tegration (UDDI) 3.0.2 (2004), http://uddi.org/pubs/uddi_v3.htm

2. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.: METEOR-
S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discov-
ery of Web Services. Journal of Information Technology and Management 6(1), 17–39
(2005)

360 X. Zheng, J. Luo, and A. Song

3. Chen, D.W., Xu, B.C., Yue, R., Li, J.Z.: A P2P Based Web Service Discovery Mechanism
with Bounding Deployment and Publication. Chinese Journal Of Computers 28(4), 615–
626 (2005)

4. Chen, C.W., Gan, P.S., Yang, C.H.: A Service Discovery Mechanism with Load Balance
Issue in Decentralized Peer-to-peer Network. In: 11th International Conference on Parallel
and Distributed System(ICPADS 2005), pp. 592–598. IEEE Press, New York (2005)

5. Liu, Z.Z., Wang, H.M., Zhou, B.: A Two Layered P2P Model for Semantic Service Dis-
covery. Journal of Software 18(8), 1922–1932 (2007)

6. Guo, D.K., Ren, Y., Chen, H.H., Luo, X.S.: A QoS-Guaranteed and Distributed Model
forWeb Service Discovery. Journal of software 17(11), 2324–2334 (2006)

7. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to
the Traveling Salesman Problem. IEEE Trans. on Evolutionary Computation 1, 53–66
(1997)

8. Arpinar, I.B., Zhang, R.Y., Aleman-Meza, B., et al.: Ontology-Driven Web Service Com-
position Platform. In: Proc. of the Int’l Conf. on E-Commerce Technology, San Diego, pp.
146–152. IEEE Press, New York (2004)

9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York (1999)

10. Caro, G.D., Dorigo, M.: Antnet: Distributed Stigmergetic Control for Communications
Network. Journal of Artificial Intelligence Research 9, 317–365 (1998)

11. Baker, J.E.: Reducing Bias and Inefficiency in the Selection Algorithm. In: The Second In-
ternational Conference on Genetic Algorithms and their Application, pp. 14–21 (1987)

12. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit. ACM Trans. on Modeling and Computer Simulation 1, 1–
25 (2006)

13. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in Power Law
Networks. Phys. Rev. E64, 46135–46143 (2001)

14. Ridge, E., Curry, E.: A Roadmap of Nature-inspired Systems Research and Development.
Multiagent and Grid Systems 3, 3–8 (2007)

15. Parunak, H.V.D., Brueckner, S.A., Matthews, R., Sauter, J.: Pheromone Learning for Self-
Organizing Agents. IEEE Trans. on Systems, Man, and Cybernetics-Part A: Systems and
Humans 35(3), 316–326 (2005)

16. Gnutella website, http://www.gnutella.com
17. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured

Peer-to-peer Networks. In: The Int’l Conf. on Measurements and Modeling of Computer
Systems, pp. 84–95 (2002)

Author Index

Bergere, Guy 286

Cao, Yuanda 297
Chang, Guiran 86
Chen, Guihai 38
Chen, Hanhua 173
Chen, Qing-Kui 221
Cheng, Bin 339

Fan, Xiang 150
Feng, Xiaoshuo 86
Fu, Wei 232

Guo, Dong 162
Guo, Rui 86

He, XiaoChuan 255
Hong, Youn-Sik 1
Hu, Changjun 210
Huang, Jinjing 50

Im, Yongsoon 13

Jia, Yan 255
Jin, Hai 127, 173
Jing, Chuanming 24

Kang, Eunyoung 13
Kasim, Henry 266
Kim, Ungmo 13

Lee, Ki-Young 1
Li, Fagen 116
Li, Jianjiang 210
Li, Luqun 276
Li, Qiang 162
Li, Qing 196
Liang, Shuying 138
Liao, Xiaofei 127
Lu, Pingjing 308
Lu, Xicheng 232
Luo, Junzhou 327, 349
Luo, Xucheng 173

March, Verdi 266
Mu, Dejun 74

Pan, Wenping 74
Petiton, Serge 286

Qin, Zhiguang 173

Rao, Ruonan 138

See, Simon 266
Shao, Yewei 210
Shirase, Masaaki 116
Song, Ai-Bo 327, 349
Song, Guanghua 185
Sun, Xianhe 297

Takagi, Tsuyoshi 116
Tian, Guozhong 297
Tong, Weiqin 339
Tse, Savio S.H. 244

Wang, Dongqi 86
Wang, Hao 127
Wang, Jue 210
Wang, Wei 221
Wang, Xingang 339
Wang, Zhenghua 308
Wang, Zhiliang 24
Wu, Hangxing 74
Wu, Jianping 24
Wu, Qihui 38
Wu, Shuhua 94, 105
Wu, Song 127

Xiang, Yang 150, 162
Xiao, Nong 232
Xie, Yi 61

Yang, Bowei 185
Yang, Haitao 308
Yang, Jiwen 50
Yang, Panlong 38

362 Author Index

Yang, Peng 308

Yao, Lei 74

Yin, Xia 24

Yoo, Kee-Young 320

Yoon, Eun-Jun 320

You, Jinyuan 138

Yu, Jiong 297

Yu, Shun-zheng 61

Zhang, Rita 266
Zhang, Xinjia 74
Zhang, Ye 286
Zhao, Lei 50
Zhao, Yingjie 232
Zheng, Xiao 349
Zheng, Yao 185
Zhou, Jing-Ya 327
Zhu, Yuefei 94, 105

	Title Page
	Preface
	Organization
	Table of Contents
	An AIAD-Based Adaptive Routing Protocol in Ad-Hoc Wireless Networks
	Introduction
	Expanding Ring Search and Related Works
	Expanding Ring Search
	Related Works

	A Control Packet Minimized AODV Protocol
	Performance Evaluations
	The Experiments for the Node Mobility
	The Experiments for Node Velocity
	The Experiments for Node Density

	Concluding Remarks
	References

	Adaptive Neighbor Selection for Service Discovery in Mobile Ad Hoc Networks
	Introduction
	Existing Approaches for Service Discovery
	Proposed Service Discovery Architecture
	Single Mobile Device Architecture
	System Model

	Proposed Service Discovery Protocol
	Cooperative Neighbor Caching of Service Information
	The Lower ID-Based Service Discovery
	Cache Management

	Results and Analysis of Simulation
	Environment of Simulation
	Results of Simulation

	Conclusion
	References

	A Formal Approach to Robustness Testing of Network Protocol
	Introduction
	Related Works
	Formal Model and Testing Framework
	Model Definition
	Robustness Requirement and Normal-Verification Sequence

	Test Case Generation
	Invalid Inputs Generation
	Robustness Test Case Generation

	TTCN-3 Extensions and Test System
	Case Study: OSPFv2
	Conclusions and Future Work
	References

	Deadline Probing: Towards Timely Cognitive Wireless Network
	Introduction
	Related Work
	Problem Formation
	Deadline Probing Model
	Channel Quality Probing and Scheduling

	Deadline Probing Algorithm
	Threshold Based Filtering
	Relative Direction and Velocity Awareness

	Channel Assignment with Job Complete Deadline
	Model Description
	General Results
	Reward on Transmitting Packets
	Sub-optimal Criteria

	Simulation Results and Numerical Analysis
	Conclusions
	References

	SRDFA: A Kind of Session Reconstruction DFA
	Introduction
	Related Work
	SRDFA
	Webpages without Frame
	Webpages with Frame
	Path Supplement Based on Multi Window
	Session Reconstruction DFA

	Experimental Results
	Conclusion
	The References Section

	Measuring the Normality of Web Proxies’ Behavior Based on Locality Principles
	Introduction
	Rationale of the Proposed Scheme
	Stack Distance Model for Temporal Locality
	Profiling the Access Behavior
	Detection Scheme

	Experiments and Numerical Results
	Statistical Analysis for Observed Data
	Detection Based on HsMM

	Conclusion
	References

	Feedback Control-Based Database Connection Management for Proportional Delay Differentiation-Enabled Web Application Servers
	Introduction
	Proportional Delay Differentiation in Database Connection Pools
	ConnectionManagement in DBCP
	PDD in DBCP

	Design of a Feedback Controller
	System Identification
	Controller Design
	The Closed-Loop System
	System Implementation and Extension

	Experiments
	Test-Bed andWorkloads
	Experimental Setup and Results

	Related Work
	Conclusion
	References

	Research on the Detection of Distributed Denial of Service Attacks Based on the Characteristics of IP Flow
	Introduction
	IP Flow Based Feature Selection
	The Concepts of Micro-Flow and Macro Flow
	IP Flow Based Features

	Neural Network Classifier
	Detecting Experiments
	Conclusion
	References

	Password-Authenticated Key Exchange between Clients in a Cross-Realm Setting
	Introduction
	Security Model for Password-Based Key Exchange
	Protocol Syntax
	The Security Model
	Security Notions

	Algorithmic Assumptions
	CDH Assumption
	Security of Message Authentication Scheme

	Our Password-Based Protocol
	Description
	Security

	Conclusion
	References

	Forward Secure Password-Based Authenticated Key Distribution in the Three-Party Setting
	Introduction
	Security Model for Three-Party Key Exchange
	The Security Model
	Security Notions

	Algorithmic Assumptions
	GDH-Assumption
	PCGDH-Assumption

	Rmarks on Raymond Choo’s protocol
	Our Three-Party Password-Based Protocol
	Description
	Security

	Conclusion
	References

	Key Management Using Certificateless Public Key Cryptography in Ad Hoc Networks
	Introduction
	Related Work
	Preliminaries
	Certificateless Public Key Cryptography
	Threshold Secret Sharing

	Proposed Security Solution
	Assumptions
	Proposed Security Scheme

	Conclusions
	References

	A Data Storage Mechanism for P2P VoD Based on Multi-channel Overlay
	Introduction
	System Overview
	Multi-channel Overlay
	Network Scale Distribution
	Data Storage Status Maintenance
	Multi-channel overlay
	Optimization strategy

	Performance Measurement and Analysis
	Simulation Environment
	Network Scale Difference
	System Performance

	Related Work
	Conclusions
	References

	HTL: A Locality Bounded Flat Hash Location Service
	Introduction
	Related Works
	Locality Problem in Flat Hash Based Location Services
	HTL: A Hash Table Localized
	Map to Physical Space
	Divide the Physical Space
	Location Servers Selection and Location Information Update
	Perform Query

	AnalysisonHTL
	Experiments
	Experiment Method and Metrics
	Results on Static Network
	Results on Mobile Network
	Results on Scalability

	Conclusion
	References

	Accelerating the Propagation of Active Worms by Employing Multiple Target Discovery Techniques
	Introduction
	Related Work
	Mathematical Analysis and the Proposed Model
	Simulation Experiments
	Simple Scenarios
	Scenarios with Moderate Complexity
	Complex Scenarios

	Conclusions and Future Work
	References

	Online Accumulation: Reconstruction of Worm Propagation Path
	Introduction
	Related Work
	Problem Formulation
	Accumulation Algorithm
	Algorithm Specification
	Analysis and Prove

	Online Accumulation Algorithm
	Simulation Experiments
	EvaluationMethodology
	Simulation Methodology
	Preferences of Accumulation Algorithm
	Preferences of Online Accumulation Algorithm
	Effect of Containment

	Conclusions
	References

	HRS: A Hybrid Replication Strategy for Exhaustive P2P Search
	Introduction
	Related Work
	Query Popularity Aware Replication
	Query Popularity Independent Replication

	System Model and Problem Statement
	HRS Replication
	HRS Strategy
	Implementation of HRS

	Performance Evaluation
	Simulation Methodology
	Results

	Conclusions
	References

	ResourceDog: A Trusted Resource Discovery and Automatic Invocation P2P Framework
	Introduction
	Motivation
	Solution Overview

	Design
	Routing and Searching in the ResourceDog Framework
	Automatic Invocation
	Reputation and Recommendation

	Experiments
	Routing and Searching
	Resource Automatic Invocation
	Reputation and Recommendation Simulation

	Related Works
	Conclusions and Future Work
	References

	A Novel Approach to Manage Asymmetric Traffic Flows for Secure Network Proxies
	Background and Motivation
	Introduction
	Problems and Motivation
	Related Work

	System Architecture
	Overview
	Cluster Control-Channel Management
	Cluster Control-Channel Packet Formats
	Cluster Connection Database Management
	Traffic Flow Forwarding Module

	Discussion
	Conclusion and Future Work
	References

	Automatic Transformation for Overlapping Communication and Computation
	Introduction
	Control-Flow Graph for Message-Passing Program
	The Overlap of Communication and Computation
	Inter-procedural Data-Flow Analysis for Message-Passing Programs
	Constructing the Minimal Region from the Producer to Consumer
	Transformation Algorithm

	Experimental Results
	Related Work
	Conclusions
	References

	Cooperative Communication System for Parallel Computing Agents in Multi-cluster Grid
	Introduction
	Architecture of MCG
	CCMS Structure
	Descriptions of CCMS Process
	CCMS Start-Up
	Operation for CCMS
	CCMS Communication Process
	Computation for Density Factor

	Analysis and Experiments
	Analysis for CCMS
	Experiments

	Analysis and Experiments
	References

	CPI: A Novel Three-Phase Algorithm for QoS-Aware Replica Placement Problem
	Introduction
	Related Work
	Replication System Model and QoS-Aware Replica Placement Problem Definition
	Three-Phase Placement Algorithm
	Pharos-Based Clustering Algorithm
	Pharos Determination Policy
	Local Replica Placing Process
	Partition Integrating Mechanism

	Theoretical Analysis
	Experiments and Evaluation
	The Choice of Parameter \mathcal{N}
	Time Complexity and Space
	The Effect of Replica Placement

	Conclusion
	References

	Online Balancing Two Independent Criteria
	Introduction
	Related Works
	Our Contribution

	Definitions and Models
	The First Result
	The Feasible Region for Values of t_l and t_s
	Remarks on Algorithm FIRST

	The Second Result
	References

	Procrastination Scheduling for Fixed-Priority Tasks with Preemption Thresholds
	Introduction
	System Model
	Task Model
	Power Consumption and Execution Models
	Critical Speed
	Problem definition

	Proposed Algorithms
	An On-Line Procrastination Algorithm to Minimize the Energy Leakage: LA-FPPT

	Case Studies and Simulations
	Conclusions
	References

	Survey on Parallel Programming Model
	Introduction
	The Seven Criteria
	Parallel Programming Model
	Pthreads
	OpenMP
	CUDA
	MPI
	UPC
	Fortress

	Summary
	References

	An Integrated Framework for Wireless Sensor Web Service and Its Performance Analysis Based on Queue Theory
	Introduction
	Related Work and Challenges
	Proposed Framework
	Queueing Model for the Framework
	Analysis on the Queueing Model
	Numeral Results and Analysis
	Conclusions
	References

	Grid Computing: A Case Study in Hybrid GMRES Method
	Introduction
	GMRES(m)/LS-Arnoldi Hybrid Parallel Method
	GMRES Method
	The Hybrid Algorithm GMRES(m)/LS(k,l)
	The Hybrid Method for Complex Problem

	Implementation on GRID System
	Numeric Results and Analysis
	Advantages of the Hybrid Method
	Characteristics of the Hybrid Method
	Complex Problems

	Conclusion
	References

	Towards Resource Reliability Support for Grid Workflows
	Introduction
	Related Works
	Overview of Grid Workflow Management System
	Description of Algorithm
	The Model
	Main Steps of Algorithm

	Performance Evaluation
	Conclusion
	References

	A SyncML Middleware-Based Solution for Pervasive Relational Data Synchronization
	Introduction
	Project Background and Related Work
	Our Major Approach

	Sync Model
	Change_log's Design
	Sync Session
	Handling Conflict
	Sync Networking
	Mobile Access
	Experiments
	Conclusion
	References

	An Efficient Authentication and Key Agreement Protocol in RFID System
	Introduction
	Review of He et al.’s AKA Protocol
	Proposed AKA Protocol
	Security Analysis
	Efficiency Analysis
	Conclusions
	References

	Grid Service Discovery Based on Cross-VO Service Domain Model
	Introduction
	Related Work
	Cross-VO Service Domain Model
	Introduction to the Model
	Service Discovery Strategy

	Performance Analysis
	Experiment
	Experimental Environment
	Metrics
	Results

	Conclusion and Future Work
	References

	Ontology-Based Semantic Method for Service Modeling in Grid
	Introduction
	Service Oriented Grid Hierarchical Architecture
	Critical Technologies of Grid Service Layer
	Grid Ontology Architecture
	Grid Service Matchmaking Semantically

	Conclusions and Future Work
	References

	A Scalable and Adaptive Distributed Service Discovery Mechanism in SOC Environments
	Introduction
	Related Work
	A P2P-Based Distributed Service Registry System
	Agent-Based Ant-Like Service Discovery
	Behaviors of Agents
	Ant-Like Service Discovery Approach

	Simulation and Performance Analysis
	Performance Analysis
	Comparison with Classical Algorithms

	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

